THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS

被引:0
作者
Gil-Munoz, Daniel [1 ]
Tinkova, Magdalena [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 8, Czech Republic
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague 6, Czech Republic
[3] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
关键词
universal quadratic form; totally real number field; additively indecomposable integer;
D O I
10.1017/S0004972723000953
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The lifting problem for universal quadratic forms over a totally real number field K consists of determining the existence or otherwise of a quadratic form with integer coefficients (or $\mathbb {Z}$-form) that is universal over K. We prove the nonexistence of universal $\mathbb {Z}$-forms over simplest cubic fields for which the integer parameter is big enough. The monogenic case is already known. We prove the nonexistence in the nonmonogenic case by using the existence of a totally positive nonunit algebraic integer in K with minimal (codifferent) trace equal to one.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 14 条
[1]   p-integral bases of a cubic field [J].
Alaca, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) :1949-1953
[2]  
Gil-Munoz D., 2022, PREPRINT
[3]   Normal integral bases and Gaussian periods in the simplest cubic fields [J].
Hashimoto, Yu ;
Aoki, Miho .
ANNALES MATHEMATIQUES DU QUEBEC, 2024, 48 (01) :157-173
[4]  
HSIA JS, 1978, J REINE ANGEW MATH, V301, P132
[5]   Universal Quadratic Forms, Small Norms, and Traces in Families of Number Fields [J].
Kala, Vitezslav ;
Tinkova, Magdalena .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (09) :7541-7577
[6]   Lifting problem for universal quadratic forms [J].
Kala, Vitezslav ;
Yatsyna, Pavlo .
ADVANCES IN MATHEMATICS, 2021, 377
[7]   THE CHARACTERIZATION OF CYCLIC CUBIC FIELDS WITH POWER INTEGRAL BASES [J].
Kashio, Tomokazu ;
Sekigawa, Ryutaro .
KODAI MATHEMATICAL JOURNAL, 2021, 44 (02) :290-306
[8]  
Kim D., 2023, PREPRINT
[9]   SIMPLEST CUBIC FIELDS [J].
LEMMERMEYER, F ;
PETHO, A .
MANUSCRIPTA MATHEMATICA, 1995, 88 (01) :53-58
[10]  
MaaB H., 1941, Abh. Math. Semin. Univ. Hambg., V14, P185