The sharp refined Bohr-Rogosinski inequalities for certain classes of harmonic mappings

被引:4
作者
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata, West Bengal, India
关键词
Harmonic functions; close-to-convex functions; coefficient estimates; growth theorem; Bohr radius; Bohr-Rogosisnki radius; POWER-SERIES; RADIUS; SUBCLASSES; THEOREM; SUBORDINATION; SECTIONS; FAMILIES;
D O I
10.1080/17476933.2022.2155636
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class F consisting of analytic functions f(z) = Sigma(infinity)(n=0) a(n)z(n) in the unit disc D = {z is an element of C: |z| < 1} satisfies a Bohr phenomenon if there exists an r(f) > 0 such that Sigma(infinity)(n=1) |a(n)|r(n) <= d (f (0),partial derivative f(D)) for every function f is an element of F, and |z| = r <= rf. The largest radius rf is the Bohr radius and the inequality Sigma(infinity)(n=1) |an|r(n) <= d (f (0), partial derivative f(D)) is Bohr inequality for the class F, where "d' is the Euclidean distance. In this paper, we prove sharp refinement of the Bohr-Rogosinski inequality for certain classes of harmonic mappings.
引用
收藏
页码:586 / 606
页数:21
相关论文
共 68 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Bohr's phenomenon in subordination and bounded harmonic classes [J].
Abu Muhanna, Yusuf .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) :1071-1078
[3]   The Bohr phenomenon for analytic functions on shifted disks [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao ;
Halder, Himadri .
ANNALES FENNICI MATHEMATICI, 2022, 47 (01) :103-120
[4]   Bohr-Rogosinski Inequalities for Certain Fully Starlike Harmonic Mappings [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) :1913-1927
[5]   The Bohr-Rogosinski Radius for a Certain Class of Close-to-Convex Harmonic Mappings [J].
Ahamed, Molla Basir .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022,
[6]   Improved Bohr inequalities for certain class of harmonic univalent functions [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao ;
Halder, Himadri .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) :267-290
[7]   Bohr radius for certain classes of close-to-convex harmonic mappings [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao ;
Halder, Himadri .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
[8]   On the Rogosinski radius for holomorphic mappings and some of its applications [J].
Aizenberg, L ;
Elin, M ;
Shoikhet, D .
STUDIA MATHEMATICA, 2005, 168 (02) :147-158
[9]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[10]  
Aizenberg L., 2009, COMPUT METH FUNCT TH, V9, P65, DOI DOI 10.1007/BF03321715