Averaging Method for Quasi-Linear Hyperbolic Systems

被引:0
作者
Levenshtam, V. B. [1 ,2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] Southern Fed Univ, Rostov Na Donu, Russia
基金
俄罗斯科学基金会;
关键词
EQUATIONS;
D O I
10.1134/S1061920823040118
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper considers the Cauchy problem for a multidimensional quasilinear hyperbolic system of differential equations with the data rapidly oscillating in time. This data do not explicitly depend on spatial variables. The method by N. M. Krylov-N. N. Bogolyubov is developed and justified for these systems. Also an algorithm is developed and justified, based on this method and the method of two-scale expansions, for constructing the complete asymptotics of solutions. DOI 10.1134/S1061920823040118
引用
收藏
页码:552 / 560
页数:9
相关论文
共 18 条
[1]  
Bogolyubov NikolayN., 1974, Asymptotic methods in the theory of nonlinear oscillations
[2]   AN AVERAGING THEOREM FOR NONLINEAR SCHRODINGER EQUATIONS WITH SMALL NONLINEARITIES [J].
Huang, Guan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) :3555-3574
[3]  
Ivleva N, 2015, EURASIAN MATH J, V6, P41
[4]  
Jian W., 2020, SMS, V75, P37
[5]   On the Homogenization Principle in a Time-Periodic Problem for the Navier-Stokes Equations with Rapidly Oscillating Mass Force [J].
Khatskevich, V. L. .
MATHEMATICAL NOTES, 2016, 99 (5-6) :757-768
[6]  
Khoma G. P., 1970, Ukr. math. magazine, V22, P699
[7]  
Lehman B., 2002, IMA Journal of Mathematical Control and Information, V19, P201, DOI 10.1093/imamci/19.1_and_2.201
[8]  
[Левешптам В.Б. Levenshtam V.B.], 2006, [Известия Российской академии наук. Серия математическая, Izvestiya: Mathematics, Izvestiya Rossiiskoi akademii nauk. Seriya matematicheskaya], V70, P25
[9]  
Levenshtam V. B., 2010, Differential Equations with Large High-Frequency Components
[10]   Higher-order approximations of the averaging method for parabolic initial-boundary value problems with rapidly oscillating coefficients [J].
Levenshtam, VB .
DIFFERENTIAL EQUATIONS, 2003, 39 (10) :1471-1479