A novel robust estimation for high-dimensional precision matrices

被引:3
作者
Wang, Shaoxin [1 ]
Xie, Chaoping [2 ]
Kang, Xiaoning [3 ,4 ,5 ,6 ]
机构
[1] Qufu Normal Univ, Sch Stat & Data Sci, Qufu, Peoples R China
[2] Nanjing Agr Univ, Coll Econ & Management, Nanjing, Peoples R China
[3] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, Dalian, Peoples R China
[4] Dongbei Univ Finance & Econ, Int Business Coll, Dalian, Peoples R China
[5] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, 217 Jianshan St, Dalian 116025, Peoples R China
[6] Dongbei Univ Finance & Econ, Int Business Coll, 217 Jianshan St, Dalian 116025, Peoples R China
基金
中国国家自然科学基金;
关键词
modified Cholesky decomposition; penalized LAD; precision matrix; robust estimation; COVARIANCE-MATRIX; SPARSE ESTIMATION; MODELS;
D O I
10.1002/sim.9636
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we propose a new robust estimation of precision matrices for high-dimensional data when the number of variables is larger than the sample size. Different from the existing methods in literature, the proposed model combines the technique of modified Cholesky decomposition (MCD) with the robust generalized M-estimators. The MCD reparameterizes a precision matrix and transforms its estimation into solving a series of linear regressions, in which the commonly used robust techniques can be conveniently incorporated. Additionally, the proposed method adopts the model averaging idea to address the ordering issue in the MCD approach, resulting in an accurate estimation for precision matrices. Simulations and real data analysis are conducted to illustrate the merits of the proposed estimator.
引用
收藏
页码:656 / 675
页数:20
相关论文
共 50 条
[41]   Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression [J].
Insolia, Luca ;
Kenney, Ana ;
Calovi, Martina ;
Chiaromonte, Francesca .
STATS, 2021, 4 (03) :665-681
[42]   Linear shrinkage estimation of high-dimensional means [J].
Ikeda, Yuki ;
Nakada, Ryumei ;
Kubokawa, Tatsuya ;
Srivastava, Muni S. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (13) :4444-4460
[43]   High-dimensional multivariate realized volatility estimation [J].
Bollerslev, Tim ;
Meddahi, Nour ;
Nyawa, Serge .
JOURNAL OF ECONOMETRICS, 2019, 212 (01) :116-136
[44]   Consistent estimation of the high-dimensional efficient frontier [J].
Bodnar, Taras ;
Hautsch, Nikolaus ;
Okhrin, Yarema ;
Parolya, Nestor .
EUROPEAN JOURNAL OF FINANCE, 2025,
[45]   Minimum Distance Lasso for robust high-dimensional regression [J].
Lozano, Aurelie C. ;
Meinshausen, Nicolai ;
Yang, Eunho .
ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01) :1296-1340
[46]   Robust high-dimensional regression for data with anomalous responses [J].
Ren, Mingyang ;
Zhang, Sanguo ;
Zhang, Qingzhao .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (04) :703-736
[47]   Posterior convergence rates for high-dimensional precision matrix estimation using G-Wishart priors [J].
Banerjee, Sayantan .
STAT, 2017, 6 (01) :207-217
[48]   Robust feature screening for high-dimensional survival data [J].
Hao, Meiling ;
Lin, Yuanyuan ;
Liu, Xianhui ;
Tang, Wenlu .
JOURNAL OF APPLIED STATISTICS, 2019, 46 (06) :979-994
[49]   Robust adaptive LASSO in high-dimensional logistic regression [J].
Basu, Ayanendranath ;
Ghosh, Abhik ;
Jaenada, Maria ;
Pardo, Leandro .
STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (05) :1217-1249
[50]   Two-step estimators of high-dimensional correlation matrices [J].
Garcia-Medina, Andres ;
Micciche, Salvatore ;
Mantegna, Rosario N. .
PHYSICAL REVIEW E, 2023, 108 (04)