A novel robust estimation for high-dimensional precision matrices

被引:3
作者
Wang, Shaoxin [1 ]
Xie, Chaoping [2 ]
Kang, Xiaoning [3 ,4 ,5 ,6 ]
机构
[1] Qufu Normal Univ, Sch Stat & Data Sci, Qufu, Peoples R China
[2] Nanjing Agr Univ, Coll Econ & Management, Nanjing, Peoples R China
[3] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, Dalian, Peoples R China
[4] Dongbei Univ Finance & Econ, Int Business Coll, Dalian, Peoples R China
[5] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, 217 Jianshan St, Dalian 116025, Peoples R China
[6] Dongbei Univ Finance & Econ, Int Business Coll, 217 Jianshan St, Dalian 116025, Peoples R China
基金
中国国家自然科学基金;
关键词
modified Cholesky decomposition; penalized LAD; precision matrix; robust estimation; COVARIANCE-MATRIX; SPARSE ESTIMATION; MODELS;
D O I
10.1002/sim.9636
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we propose a new robust estimation of precision matrices for high-dimensional data when the number of variables is larger than the sample size. Different from the existing methods in literature, the proposed model combines the technique of modified Cholesky decomposition (MCD) with the robust generalized M-estimators. The MCD reparameterizes a precision matrix and transforms its estimation into solving a series of linear regressions, in which the commonly used robust techniques can be conveniently incorporated. Additionally, the proposed method adopts the model averaging idea to address the ordering issue in the MCD approach, resulting in an accurate estimation for precision matrices. Simulations and real data analysis are conducted to illustrate the merits of the proposed estimator.
引用
收藏
页码:656 / 675
页数:20
相关论文
共 50 条
[21]   ROBUST DEPENDENCE MODELING FOR HIGH-DIMENSIONAL COVARIANCE MATRICES WITH FINANCIAL APPLICATIONS [J].
Zhu, Zhe ;
Welsch, Roy E. .
ANNALS OF APPLIED STATISTICS, 2018, 12 (02) :1228-1249
[22]   Estimating high-dimensional covariance and precision matrices under general missing dependence [J].
Park, Seongoh ;
Wang, Xinlei ;
Lim, Johan .
ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02) :4868-4915
[23]   Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data [J].
Kubokawa, Tatsuya ;
Srivastava, Muni S. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (09) :1906-1928
[24]   JOINT VARIABLE AND RANK SELECTION FOR PARSIMONIOUS ESTIMATION OF HIGH-DIMENSIONAL MATRICES [J].
Bunea, Florentina ;
She, Yiyuan ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2012, 40 (05) :2359-2388
[25]   Ridge estimation of inverse covariance matrices from high-dimensional data [J].
van Wieringen, Wessel N. ;
Peeters, Carel F. W. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 :284-303
[26]   Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data [J].
Qian, Fang ;
Chen, Yu ;
Zhang, Weiping .
JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
[27]   Honest confidence regions and optimality in high-dimensional precision matrix estimation [J].
Jana Janková ;
Sara van de Geer .
TEST, 2017, 26 :143-162
[28]   A new robust covariance matrix estimation for high-dimensional microbiome data [J].
Wang, Jiyang ;
Liang, Wanfeng ;
Li, Lijie ;
Wu, Yue ;
Ma, Xiaoyan .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (02) :281-295
[29]   Minimax optimal estimation of high-dimensional sparse covariance matrices with missing data [J].
Qi, Xinyu ;
Wang, Jinru ;
Zeng, Xiaochen .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
[30]   Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model [J].
Fan, Jianqing ;
Kim, Donggyu .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) :1268-1283