A novel robust estimation for high-dimensional precision matrices

被引:2
作者
Wang, Shaoxin [1 ]
Xie, Chaoping [2 ]
Kang, Xiaoning [3 ,4 ,5 ,6 ]
机构
[1] Qufu Normal Univ, Sch Stat & Data Sci, Qufu, Peoples R China
[2] Nanjing Agr Univ, Coll Econ & Management, Nanjing, Peoples R China
[3] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, Dalian, Peoples R China
[4] Dongbei Univ Finance & Econ, Int Business Coll, Dalian, Peoples R China
[5] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, 217 Jianshan St, Dalian 116025, Peoples R China
[6] Dongbei Univ Finance & Econ, Int Business Coll, 217 Jianshan St, Dalian 116025, Peoples R China
基金
中国国家自然科学基金;
关键词
modified Cholesky decomposition; penalized LAD; precision matrix; robust estimation; COVARIANCE-MATRIX; SPARSE ESTIMATION; MODELS;
D O I
10.1002/sim.9636
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we propose a new robust estimation of precision matrices for high-dimensional data when the number of variables is larger than the sample size. Different from the existing methods in literature, the proposed model combines the technique of modified Cholesky decomposition (MCD) with the robust generalized M-estimators. The MCD reparameterizes a precision matrix and transforms its estimation into solving a series of linear regressions, in which the commonly used robust techniques can be conveniently incorporated. Additionally, the proposed method adopts the model averaging idea to address the ordering issue in the MCD approach, resulting in an accurate estimation for precision matrices. Simulations and real data analysis are conducted to illustrate the merits of the proposed estimator.
引用
收藏
页码:656 / 675
页数:20
相关论文
共 50 条
  • [21] ROBUST DEPENDENCE MODELING FOR HIGH-DIMENSIONAL COVARIANCE MATRICES WITH FINANCIAL APPLICATIONS
    Zhu, Zhe
    Welsch, Roy E.
    ANNALS OF APPLIED STATISTICS, 2018, 12 (02) : 1228 - 1249
  • [22] Estimating high-dimensional covariance and precision matrices under general missing dependence
    Park, Seongoh
    Wang, Xinlei
    Lim, Johan
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4868 - 4915
  • [23] Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data
    Kubokawa, Tatsuya
    Srivastava, Muni S.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (09) : 1906 - 1928
  • [24] JOINT VARIABLE AND RANK SELECTION FOR PARSIMONIOUS ESTIMATION OF HIGH-DIMENSIONAL MATRICES
    Bunea, Florentina
    She, Yiyuan
    Wegkamp, Marten H.
    ANNALS OF STATISTICS, 2012, 40 (05) : 2359 - 2388
  • [25] Ridge estimation of inverse covariance matrices from high-dimensional data
    van Wieringen, Wessel N.
    Peeters, Carel F. W.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 284 - 303
  • [26] Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data
    Qian, Fang
    Chen, Yu
    Zhang, Weiping
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
  • [27] Honest confidence regions and optimality in high-dimensional precision matrix estimation
    Jana Janková
    Sara van de Geer
    TEST, 2017, 26 : 143 - 162
  • [28] A new robust covariance matrix estimation for high-dimensional microbiome data
    Wang, Jiyang
    Liang, Wanfeng
    Li, Lijie
    Wu, Yue
    Ma, Xiaoyan
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (02) : 281 - 295
  • [29] Minimax optimal estimation of high-dimensional sparse covariance matrices with missing data
    Qi, Xinyu
    Wang, Jinru
    Zeng, Xiaochen
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (06)
  • [30] Robust High-Dimensional Volatility Matrix Estimation for High-Frequency Factor Model
    Fan, Jianqing
    Kim, Donggyu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) : 1268 - 1283