A novel robust estimation for high-dimensional precision matrices

被引:2
|
作者
Wang, Shaoxin [1 ]
Xie, Chaoping [2 ]
Kang, Xiaoning [3 ,4 ,5 ,6 ]
机构
[1] Qufu Normal Univ, Sch Stat & Data Sci, Qufu, Peoples R China
[2] Nanjing Agr Univ, Coll Econ & Management, Nanjing, Peoples R China
[3] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, Dalian, Peoples R China
[4] Dongbei Univ Finance & Econ, Int Business Coll, Dalian, Peoples R China
[5] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, 217 Jianshan St, Dalian 116025, Peoples R China
[6] Dongbei Univ Finance & Econ, Int Business Coll, 217 Jianshan St, Dalian 116025, Peoples R China
基金
中国国家自然科学基金;
关键词
modified Cholesky decomposition; penalized LAD; precision matrix; robust estimation; COVARIANCE-MATRIX; SPARSE ESTIMATION; MODELS;
D O I
10.1002/sim.9636
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we propose a new robust estimation of precision matrices for high-dimensional data when the number of variables is larger than the sample size. Different from the existing methods in literature, the proposed model combines the technique of modified Cholesky decomposition (MCD) with the robust generalized M-estimators. The MCD reparameterizes a precision matrix and transforms its estimation into solving a series of linear regressions, in which the commonly used robust techniques can be conveniently incorporated. Additionally, the proposed method adopts the model averaging idea to address the ordering issue in the MCD approach, resulting in an accurate estimation for precision matrices. Simulations and real data analysis are conducted to illustrate the merits of the proposed estimator.
引用
收藏
页码:656 / 675
页数:20
相关论文
共 50 条
  • [1] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [2] JOINT ESTIMATION OF MULTIPLE HIGH-DIMENSIONAL PRECISION MATRICES
    Cai, T. Tony
    Li, Hongzhe
    Liu, Weidong
    Xie, Jichun
    STATISTICA SINICA, 2016, 26 (02) : 445 - 464
  • [3] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107
  • [4] Efficient Minimax Estimation of a Class of High-Dimensional Sparse Precision Matrices
    Chen, Xiaohui
    Kim, Young-Heon
    Wang, Z. Jane
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2899 - 2912
  • [5] Robust sparse precision matrix estimation for high-dimensional compositional data
    Liang, Wanfeng
    Wu, Yue
    Ma, Xiaoyan
    STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [6] Improved Calibration of High-Dimensional Precision Matrices
    Zhang, Mengyi
    Rubio, Francisco
    Palomar, Daniel P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (06) : 1509 - 1519
  • [7] Test for bandedness of high-dimensional precision matrices
    Cheng, Guanghui
    Zhang, Zhengjun
    Zhang, Baoxue
    JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (04) : 884 - 902
  • [8] Regularized Estimation of Linear Functionals of Precision Matrices for High-Dimensional Time Series
    Chen, Xiaohui
    Xu, Mengyu
    Wu, Wei Biao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (24) : 6459 - 6470
  • [9] Estimation of high-dimensional dynamic conditional precision matrices with an application to forecast combination
    Lee, Tae-Hwy
    Mao, Millie Yi
    Ullah, Aman
    ECONOMETRIC REVIEWS, 2021, 40 (10) : 905 - 918
  • [10] High-dimensional robust precision matrix estimation: Cellwise corruption under ε-contamination
    Loh, Po-Ling
    Tan, Xin Lu
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 1429 - 1467