Base-Promoted Tandem Pathway for Keto-Amides: Visible Light-Mediated Room-Temperature Amidation Using Molecular Oxygen as an Oxidant

被引:9
作者
Das, Suman [1 ]
Mondal, Soumya [1 ]
Midya, Siba P. [1 ]
Mondal, Subal [1 ]
Ghosh, Eliza [1 ]
Ghosh, Pradyut [1 ]
机构
[1] Indian Assoc Cultivat Sci, Sch Chem Sci, Kolkata 700032, W Bengal, India
关键词
OXIDATIVE AMIDATION; ALPHA-KETOAMIDES; TERMINAL ALKYNES; GENERAL-APPROACH; INHIBITORS; QUINOXALINES; CATALYSIS; EFFICIENT; PROTEASE; ACCESS;
D O I
10.1021/acs.joc.3c00686
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Herein, we report metal- and photocatalyst-free room-temperature amidation for alpha-ketoamide synthesis from feedstock phenacyl bromides and amines using molecular oxygen as an oxidant as well as a source of oxygen in the amide segment. Visible light-mediated base-promoted one-pot sequential C-N/C= N/C= O bond formation takes place in a tandem manner to afford the desired product. Functional group tolerance (benzylic alcohol, keto, cyano, nitro, halo, etc.), a broad substrate scope, and gram-scale synthesis make this synthetic methodology more attractive. We have observed that electron-rich aromatic amines, aliphatic amines, and phenacyl bromide derivatives proceeded the present transformation with marginally superior reactivity in comparison to electron-deficient aromatic amines and phenacyl bromide derivatives. Moreover, several control experiments, in situ isolation of secondary amine and imine as key intermediates, and O-18-labeling experiments provide complete insight into the mechanism of the tandem pathway.
引用
收藏
页码:14847 / 14859
页数:13
相关论文
共 52 条
[11]   Synthesis of Fused Dihydropyrano(furano)pyridines via [4+2]-Cycloaddition of 5-Alkenoxy Substituted Oxazoles [J].
Goodman, Steven N. ;
Mans, Douglas M. ;
Sisko, Joseph ;
Yin, Hao .
ORGANIC LETTERS, 2012, 14 (06) :1604-1607
[12]   The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow [J].
Hone, Christopher A. ;
Kappe, C. Oliver .
TOPICS IN CURRENT CHEMISTRY, 2019, 377 (01)
[13]   Rapid assembly of α-ketoamides through a decarboxylative strategy of isocyanates with α-oxocarboxylic acids under mild conditions [J].
Huang, Junjie ;
Liang, Baihui ;
Chen, Xiuwen ;
Liu, Yifu ;
Li, Yawen ;
Liang, Jingwen ;
Zhu, Weidong ;
Tang, Xiaodong ;
Li, Yibiao ;
Zhu, Zhongzhi .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2021, 19 (21) :4783-4787
[14]   CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides [J].
Kataoka, Kengo ;
Wachi, Keiju ;
Jin, Xiongjie ;
Suzuki, Kosuke ;
Sasano, Yusuke ;
Iwabuchi, Yoshiharu ;
Hasegawa, Jun-ya ;
Mizuno, Noritaka ;
Yamaguchi, Kazuya .
CHEMICAL SCIENCE, 2018, 9 (21) :4756-4768
[15]   Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation [J].
Kim, SY ;
Park, KH ;
Chung, YK .
CHEMICAL COMMUNICATIONS, 2005, (10) :1321-1323
[16]   Metal free synthesis of α-keto amides from 2-hydroxy acetophenones through domino alcohol oxidation-oxidative amidation reaction [J].
Kotha, Surya Srinivas ;
Sekar, Govindasamy .
TETRAHEDRON LETTERS, 2015, 56 (46) :6323-6326
[17]   Iron-TEMPO-Catalyzed Domino Aerobic Alcohol Oxidation/Oxidative Cross-Dehydrogenative Coupling for the Synthesis of α-Keto Amides [J].
Kotha, Surya Srinivas ;
Chandrasekar, Selvaraj ;
Sahu, Samrat ;
Sekar, Govindasamy .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2014, 2014 (33) :7451-7457
[18]   Rh(I)-Catalyzed Intermolecular Hydroacylation: Enantioselective Cross-Coupling of Aldehydes and Ketoamides [J].
Kou, Kevin G. M. ;
Le, Diane N. ;
Dong, Vy M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (26) :9471-9476
[19]   Ni-nanoparticles: An efficient catalyst for the synthesis of quinoxalines [J].
Kumar, Ajeet ;
Kumar, Santosh ;
Saxena, Amit ;
De, Arnab ;
Mozumdar, Subho .
CATALYSIS COMMUNICATIONS, 2008, 9 (05) :778-784
[20]   Recent Advances in the Catalytic Synthesis of α-Ketoamides [J].
Kumar, Dinesh ;
Vemula, Sandeep R. ;
Cook, Gregory R. .
ACS CATALYSIS, 2016, 6 (08) :4920-4945