Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer

被引:15
作者
Kronmiller, Brent A. [1 ,2 ]
Feau, Nicolas [3 ]
Shen, Danyu [4 ]
Tabima, Javier F. [5 ]
Ali, Shahin S. [6 ]
Armitage, Andrew D. [7 ]
Arredondo, Felipe [1 ,2 ]
Bailey, Bryan A. [6 ]
Bollmann, Stephanie R. [8 ]
Dale, Angela [3 ,9 ]
Harrison, Richard J. [10 ]
Hrywkiw, Kelly [3 ]
Kasuga, Takao [11 ]
McDougal, Rebecca [12 ]
Nellist, Charlotte F. [10 ]
Panda, Preeti [13 ]
Tripathy, Sucheta [14 ]
Williams, Nari M. [12 ,15 ]
Ye, Wenwu [4 ]
Wang, Yuanchao [4 ]
Hamelin, Richard C. [3 ,16 ,17 ]
Grunwald, Niklaus J. [18 ]
机构
[1] Oregon State Univ, Ctr Quantitat Life Sci, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
[3] Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC, Canada
[4] Nanjing Agr Univ, Dept Plant Pathol, Nanjing, Peoples R China
[5] Clark Univ, Dept Biol, Worcester, MA USA
[6] USDA ARS, Sustainable Perennial Crops Lab, Northeast Area, Beltsville Agr Res Ctr West, Beltsville, MD USA
[7] Univ Greenwich, Nat Resources Inst, Chatham, England
[8] Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA
[9] FPInnovations, SC New Construct Mat, Vancouver, BC V6T 1Z4, Canada
[10] NIAB EMR, East Malling, England
[11] ARS, Crops Pathol & Genet Res Unit, USDA, Davis, CA USA
[12] Scion Zealand Forest Res Inst, 49 Sala St,Te Papa Tipu Innovat Pk, Rotorua, New Zealand
[13] New Zealand Inst Plant & Food Res Ltd, 74 Gerald St, Lincoln 7608, New Zealand
[14] CSIR Indian Inst Chem Biol, Kolkata, India
[15] Plant & Food Res, Dept Pathogen Ecol & Control, Private Bag 1401, Havelock North, New Zealand
[16] Univ Laval, Inst Biol Integrat & Syst IBIS, Quebec City, PQ, Canada
[17] Univ Laval, Fac Foresterie & Geog, Dept Sci Bois & Foret, Quebec City, PQ, Canada
[18] ARS, USDA, Hort Crop Res Unit, Corvallis, OR USA
基金
英国生物技术与生命科学研究理事会; 美国农业部; 美国食品与农业研究所;
关键词
effectors; horizontal gene transfer; oomycete plant pathogens; Phytophthora; FILAMENTOUS PLANT-PATHOGENS; RXLR EFFECTORS; MULTILOCUS PHYLOGENY; SEQUENCE; EVOLUTION; INFESTANS; RAMORUM; SOJAE; IDENTIFICATION; MECHANISMS;
D O I
10.1094/MPMI-06-22-0133-R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora.Copyright (c) 2023 The Author(s). This is an open access article distributed under the .
引用
收藏
页码:26 / 46
页数:21
相关论文
共 143 条
  • [1] Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms
    Ali, Shahin S.
    Shao, Jonathan
    Lary, David J.
    Kronmiller, Brent A.
    Shen, Danyu
    Strem, Mary D.
    Amoako-Attah, Ishmael
    Akrofi, Andrew Yaw
    Begoude, B. A. Didier
    ten Hoopen, G. Martijn
    Coulibaly, Klotioloma
    Kebe, Boubacar Ismael
    Melnick, Rachel L.
    Guiltinan, Mark J.
    Tyler, Brett M.
    Meinhardt, Lyndel W.
    Bailey, Bryan A.
    [J]. GENOME BIOLOGY AND EVOLUTION, 2017, 9 (03): : 536 - 557
  • [2] ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
  • [3] Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea
    Amselem, Joelle
    Cuomo, Christina A.
    van Kan, Jan A. L.
    Viaud, Muriel
    Benito, Ernesto P.
    Couloux, Arnaud
    Coutinho, Pedro M.
    de Vries, Ronald P.
    Dyer, Paul S.
    Fillinger, Sabine
    Fournier, Elisabeth
    Gout, Lilian
    Hahn, Matthias
    Kohn, Linda M.
    Lapalu, Nicolas
    Plummer, Kim M.
    Pradier, Jean-Marc
    Quevillon, Emmanuel
    Sharon, Amir
    Simon, Adeline
    ten Have, Arjen
    Tudzynski, Bettina
    Tudzynski, Paul
    Wincker, Patrick
    Andrew, Marion
    Anthouard, Veronique
    Beever, Ross E.
    Beffa, Rolland
    Benoit, Isabelle
    Bouzid, Ourdia
    Brault, Baptiste
    Chen, Zehua
    Choquer, Mathias
    Collemare, Jerome
    Cotton, Pascale
    Danchin, Etienne G.
    Da Silva, Corinne
    Gautier, Angelique
    Giraud, Corinne
    Giraud, Tatiana
    Gonzalez, Celedonio
    Grossetete, Sandrine
    Gueldener, Ulrich
    Henrissat, Bernard
    Howlett, Barbara J.
    Kodira, Chinnappa
    Kretschmer, Matthias
    Lappartient, Anne
    Leroch, Michaela
    Levis, Caroline
    [J]. PLOS GENETICS, 2011, 7 (08):
  • [4] Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum
    Armitage, Andrew D.
    Lysoe, Erik
    Nellist, Charlotte F.
    Lewis, Laura A.
    Cano, Liliana M.
    Harrison, Richard J.
    Brurberg, May B.
    [J]. PLOS ONE, 2018, 13 (10):
  • [5] Aronesty E., 2013, Open Bioinf. J., V7, P1, DOI [DOI 10.2174/1875036201307010001, 10.2174/1875036201307010001]
  • [6] Plant cells under siege: plant immune system versus pathogen effectors
    Asai, Shuta
    Shirasu, Ken
    [J]. CURRENT OPINION IN PLANT BIOLOGY, 2015, 28 : 1 - 8
  • [7] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [8] SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing
    Bankevich, Anton
    Nurk, Sergey
    Antipov, Dmitry
    Gurevich, Alexey A.
    Dvorkin, Mikhail
    Kulikov, Alexander S.
    Lesin, Valery M.
    Nikolenko, Sergey I.
    Son Pham
    Prjibelski, Andrey D.
    Pyshkin, Alexey V.
    Sirotkin, Alexander V.
    Vyahhi, Nikolay
    Tesler, Glenn
    Alekseyev, Max A.
    Pevzner, Pavel A.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) : 455 - 477
  • [9] Repbase Update, a database of repetitive elements in eukaryotic genomes
    Bao, Weidong
    Kojima, Kenji K.
    Kohany, Oleksiy
    [J]. MOBILE DNA, 2015, 6
  • [10] Automated de novo identification of repeat sequence families in sequenced genomes
    Bao, ZR
    Eddy, SR
    [J]. GENOME RESEARCH, 2002, 12 (08) : 1269 - 1276