On three general forms of multiple zeta(-star) values

被引:1
作者
Chen, Kwang-Wu [1 ]
Eie, Minking [2 ]
机构
[1] Univ Taipei, Dept Math, Taipei 100234, Taiwan
[2] Natl Chung Cheng Univ, Dept Math, Chiayi 62145, Taiwan
关键词
Multiple zeta values; Multiple zeta-star values; Sum formulas; SUM FORMULAS; ZETA VALUES;
D O I
10.1016/j.exmath.2023.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate three general forms of multiple zeta(-star) values. We use these values to give three new sum formulas for multiple zeta(-star) values with height < 2 and the evaluation of & zeta;*({1}m , {2}n+1).We also give a new proof of the sum formula of multiple zeta values.& COPY; 2023 Elsevier GmbH. All rights reserved.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1997, ELECTRON J COMB
[2]   Sum relations for multiple zeta values and connection formulas for the Gauss hypergeometric functions [J].
Aoki, T ;
Ohno, Y .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (02) :329-337
[3]   Generalized Jacobi-Trudi determinants and evaluations of Schur multiple zeta values [J].
Bachmann, Henrik ;
Charlton, Steven .
EUROPEAN JOURNAL OF COMBINATORICS, 2020, 87
[4]   On the convolutions of sums of multiple zeta(-star) values of height one [J].
Chen, Kwang Wu ;
Eie, Minking .
RAMANUJAN JOURNAL, 2022, 59 (04) :1197-1223
[5]  
Chen KW, 2018, Arxiv, DOI arXiv:1810.11795
[6]  
Chen KW, 2021, J RAMANUJAN MATH SOC, V36, P93
[7]   Generalized harmonic numbers and Euler sums [J].
Chen, Kwang-Wu .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) :513-528
[8]   Sum formulas and duality theorems of multiple zeta values [J].
Chen, Kwang-Wu ;
Chung, Chan-Liang ;
Eie, Minking .
JOURNAL OF NUMBER THEORY, 2016, 158 :33-53
[9]  
Eie M, 2013, MONOGR NUMBER THEOR, V7, P1, DOI 10.1142/8769
[10]  
Eie M., 2009, TOPICS NUMBER THEORY, V2