The prediction of the polarization curves of a solid oxide fuel cell anode with an artificial neural network supported numerical simulation

被引:23
|
作者
Gnatowski, Marek [1 ]
Buchaniec, Szymon [1 ]
Brus, Grzegorz [1 ]
机构
[1] AGH Univ Sci & Technol, 30 Mickiewicza Ave, PL-30059 Krakow, Poland
关键词
Solid oxide fuel cell; Reaction kinetics; Artificial neural network; Evolutionary algorithm; Grey -box model; Soft; -computing; CO-ELECTROLYSIS; PERFORMANCE; MODEL; SOFC; TEMPERATURE; STEAM;
D O I
10.1016/j.ijhydene.2021.09.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The presented study focuses on a numerical simulation of the transport phenomena inside a solid oxide fuel cell anode. The classical mathematical model leads to a notable discrepancy between measured and predicted overpotentials. One of the possible reasons is the assumption of the constant values of electrochemical reaction charge transfer coefficients. A modified formulation of the problem includes data-driven correction of reaction charge transfer coefficients in the electrochemical reaction model. Here we show a dedicated computational scheme in which an artificial neural network updates the charge transfer coefficients depending on the operational conditions and the available datasets. The neural network was trained on twelve experimental data points of an anode's polarization curve obtained from the literature. The training set contained data for the anode operating in two different temperatures - 800 degrees C and 900 degrees C. The test set contained additional six data points for an anode operating at 1000 degrees C. Charge transfer coefficients were proposed by the Artificial Neural Network as a functional relation of the temperature and withdrawn current. The results of the predictions are juxtaposed with the experimental data from the literature. It was shown that an Artificial Neural Network could improve an electrochemical reaction model in Solid Oxide Fuel Cell modeling. (c) 2021 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:11823 / 11830
页数:8
相关论文
共 50 条
  • [1] Reduction of Electrode Polarization in Anode-Supported Solid Oxide Fuel Cell
    Meepho, Malinee
    Wattanasiriwech, Darunee
    Aungkavattana, Pavadee
    Wattanasiriwech, Suthee
    2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2015, 79 : 272 - 277
  • [2] Modeling and Optimization of Anode-Supported Solid Oxide Fuel Cells on Cell Parameters via Artificial Neural Network and Genetic Algorithm
    Bozorgmehri, S.
    Hamedi, M.
    FUEL CELLS, 2012, 12 (01) : 11 - 23
  • [3] Polarization characteristics and fuel utilization in anode-supported solid oxide fuel cell using three-dimensional simulation
    Ji Won Hwang
    Jeong Yong Lee
    Dong Hyun Jo
    Hyun Wook Jung
    Sung Hyun Kim
    Korean Journal of Chemical Engineering, 2011, 28 : 143 - 148
  • [4] Numerical Investigation and Analyzation of an Anode-Supported Tubular Solid Oxide Fuel Cell
    Qi, Shuaiwei
    Xu, Lei
    Song, Ying
    Jiang, Wei
    Hou, Gaoyang
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 579 - 582
  • [5] Anode Polarization in Liquid Tin Anode Solid Oxide Fuel Cell
    Tao, Thomas
    Slaney, Mike
    Bateman, Linda
    Bentley, Jeff
    SOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2, 2007, 7 (01): : 1389 - 1397
  • [6] Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters
    Zhao, F
    Virkar, AV
    JOURNAL OF POWER SOURCES, 2005, 141 (01) : 79 - 95
  • [7] NUMERICAL SIMULATION OF METAL-SUPPORTED SOLID OXIDE FUEL CELL (mSOFC)
    Phoocharoen, Niwat
    Charoensuk, Jarruwat
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 209 - 216
  • [8] PERFORMANCE OF PRESSURIZED ANODE SUPPORTED SOLID OXIDE FUEL CELL
    Royer, Nathanael
    Hamilton, Ryan
    Collins, Jeffrey
    Drazin, John
    McLarty, Dustin
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2019, 2019,
  • [9] Fabrication of anode supported PEN for solid oxide fuel cell
    谢淑红
    崔崑
    夏风
    肖建中
    电池, 2004, (03) : 209 - 211
  • [10] Three-dimensional Numerical Simulation of Solid Oxide Fuel Cell Anode Microstructure
    Li, Qiangqiang
    Xue, Dingxi
    Ma, Shuai
    Zhang, Xiongwen
    Li, Guojun
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (05): : 1309 - 1315