A link between the steepest descent method and fixed-point iterations

被引:2
|
作者
Heid, Pascal [1 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
瑞士国家科学基金会;
关键词
Fixed-point iterations; Steepest descent method; Preconditioned conjugate gradient method; Preconditioning operator; Sobolev gradient; CONVERGENCE CONDITIONS; NUMERICAL-SOLUTION; SOBOLEV GRADIENTS; MINIMIZATION; OPERATORS; SYSTEMS;
D O I
10.1007/s11590-022-01867-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We will make a link between the steepest descent method for an unconstrained minimisation problem and fixed-point iterations for its Euler-Lagrange equation. In this context, we shall rediscover the preconditioned algebraic conjugate gradient method for the discretised problem. The benefit of the connection of those concepts will be illustrated by a numerical experiment.
引用
收藏
页码:27 / 44
页数:18
相关论文
共 50 条