Overcoming losses in superlenses with synthetic waves of complex frequency

被引:38
作者
Guan, Fuxin [1 ]
Guo, Xiangdong [1 ,2 ]
Zeng, Kebo [1 ]
Zhang, Shu [2 ]
Nie, Zhaoyu [3 ]
Ma, Shaojie [1 ]
Dai, Qing [2 ]
Pendry, John [4 ]
Zhang, Xiang [1 ,5 ,6 ]
Zhang, Shuang [1 ,7 ]
机构
[1] Univ Hong Kong, Dept Phys, New Cornerstone Sci Lab, Hong Kong, Peoples R China
[2] CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, CAS Key Lab Nanophoton Mat & Devices, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing, Peoples R China
[3] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[4] Imperial Coll London, Dept Phys, Blackett Lab, London SW7 2AZ, England
[5] Univ Hong Kong, Fac Sci, Hong Kong, Peoples R China
[6] Univ Hong Kong, Fac Engn, Hong Kong, Peoples R China
[7] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
TIME-REVERSAL; PHASE-CONJUGATION;
D O I
10.1126/science.adi1267
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superlenses made of plasmonic materials and metamaterials can image features at the subdiffraction scale. However, intrinsic losses impose a serious restriction on imaging resolution, a problem that has hindered widespread applications of superlenses. Optical waves of complex frequency that exhibit a temporally attenuating behavior have been proposed to offset the intrinsic losses in superlenses through the introduction of virtual gain, but experimental realization has been lacking because of the difficulty of imaging measurements with temporal decay. In this work, we present a multifrequency approach to constructing synthetic excitation waves of complex frequency based on measurements at real frequencies. This approach allows us to implement virtual gain experimentally and observe deep-subwavelength images. Our work offers a practical solution to overcome the intrinsic losses of plasmonic systems for imaging and sensing applications.
引用
收藏
页码:766 / 771
页数:6
相关论文
共 48 条
  • [1] Superlens in the Time Domain
    Archambault, Alexandre
    Besbes, Mondher
    Greffet, Jean-Jacques
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [2] Canalization of subwavelength images by electromagnetic crystals
    Belov, PA
    Simovski, CR
    Ikonen, P
    [J]. PHYSICAL REVIEW B, 2005, 71 (19)
  • [3] Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range
    Belov, Pavel A.
    Zhao, Yan
    Tse, Simon
    Ikonen, Pekka
    Silveirinha, Mario G.
    Simovski, Constantin R.
    Tretyakov, Sergei
    Hao, Yang
    Parini, Clive
    [J]. PHYSICAL REVIEW B, 2008, 77 (19)
  • [4] TIME-REVERSAL OF ULTRASONIC FIELDS .3. THEORY OF THE CLOSED TIME-REVERSAL CAVITY
    CASSEREAU, D
    FINK, M
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1992, 39 (05) : 579 - 592
  • [5] Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material
    Dai, S.
    Ma, Q.
    Andersen, T.
    Mcleod, A. S.
    Fei, Z.
    Liu, M. K.
    Wagner, M.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Keilmann, F.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [6] Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink
    de Rosny, J
    Fink, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (12) : 124301 - 124301
  • [7] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [8] Data compression and harmonic analysis
    Donoho, DL
    Vetterli, M
    DeVore, RA
    Daubechies, I
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) : 2435 - 2476
  • [9] One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity
    Draeger, C
    Fink, M
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (03) : 407 - 410
  • [10] Self-consistent calculations of loss-compensated fishnet metamaterials
    Fang, A.
    Koschny, Th.
    Soukoulis, C. M.
    [J]. PHYSICAL REVIEW B, 2010, 82 (12):