Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation

被引:4
作者
Molto-Balado, Pedro [1 ,2 ]
Reverte-Villarroya, Silvia [3 ]
Alonso-Barberan, Victor [4 ]
Monclus-Arasa, Cinta [1 ]
Balado-Albiol, Maria Teresa [5 ]
Clua-Queralt, Josep [6 ]
Clua-Espuny, Josep-Lluis [6 ,7 ]
机构
[1] Inst Catala Salut, Primary Hlth Care Ctr Tortosa Oest, Primary Care Serv SAP Terres Ebre, CAP Baix Ebre Avda Colom 16-20, Tortosa 43500, Spain
[2] Univ Rovira & Virgili, Biomed Doctoral Programme, Tortosa 43500, Spain
[3] Rovira & Virgili Univ, Nursing Dept, Biomed Doctoral Programme Campus Terres Ebre, Adv Nursing Res Grp, Av Remolins 13, Tortosa 43500, Spain
[4] Inst Educ Secundaria El Caminas, C Pintor Soler Blasco 3, Castellon de La Plana 12003, Spain
[5] Conselleria Sanitat, Primary Hlth Care Ctr CS Borriana 1, Avinguda Nules 31, Borriana 12530, Spain
[6] Inst Catala Salut, Primary Hlth Care Ctr EAP Tortosa Est, CAP El Temple Placa Carrilet S-N, Tortosa 43500, Spain
[7] Inst Univ Invest Atencio Primaria Jordi Gol IDIAPJ, Res Support Unit Terres Ebre, Ebrictus Res Grp, Tortosa 43500, Spain
基金
英国科研创新办公室;
关键词
atrial fibrillation; major adverse cardiovascular events (MACE); machine learning; artificial intelligence; RISK STRATIFICATION; MORTALITY; STROKE; THROMBOEMBOLISM; CANCER;
D O I
10.3390/technologies12020013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA(2)DS(2)-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 +/- 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 +/- 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.
引用
收藏
页数:14
相关论文
共 63 条
  • [21] Idescat Indicadors Demografics i de Territori, Estructura per Edats, Envelliment i Dependencia
  • [22] Short-term atrial fibrillation detection using electrocardiograms: A comparison of machine learning approaches
    Jahan, Masud Shah
    Mansourvar, Marjan
    Puthusserypady, Sadasivan
    Wiil, Uffe Kock
    Peimankar, Abdolrahman
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 163
  • [23] 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines
    Joglar, Jose A.
    Chung, Mina K.
    Armbruster, Anastasia L.
    Benjamin, Emelia J.
    Chyou, Janice Y.
    Cronin, Edmond M.
    Deswal, Anita
    Eckhardt, Lee L.
    Goldberger, Zachary D.
    Gopinathannair, Rakesh
    Gorenek, Bulent
    Hess, Paul L.
    Hlatky, Mark
    Hogan, Gail
    Ibeh, Chinwe
    Indik, Julia H.
    Kido, Kazuhiko
    Kusumoto, Fred
    Link, Mark S.
    Linta, Kathleen T.
    Marcus, Gregory M.
    McCarthy, Patrick M.
    Patel, Nimesh
    Patton, Kristen K.
    Perez, Marco V.
    Piccini, Jonathan P.
    Russo, Andrea M.
    Sanders, Prashanthan
    Streur, Megan M.
    Thomas, Kevin L.
    Times, Sabrina
    Tisdale, James E.
    Valente, Anne Marie
    Van Wagoner, David R.
    [J]. CIRCULATION, 2024, 149 (01) : e1 - e156
  • [24] Predicting Ischemic Stroke in Patients with Atrial Fibrillation Using Machine Learning
    Jung, Seonwoo
    Song, Min-Keun
    Lee, Eunjoo
    Bae, Sejin
    Kim, Yeon-Yong
    Lee, Doheon
    Lee, Myoung Jin
    Yoo, Sunyong
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2022, 27 (03):
  • [25] Cancer-associated venous thromboembolism
    Khorana, Alok A.
    Mackman, Nigel
    Falanga, Anna
    Pabinger, Ingrid
    Noble, Simon
    Ageno, Walter
    Moik, Florian
    Lee, Agnes Y. Y.
    [J]. NATURE REVIEWS DISEASE PRIMERS, 2022, 8 (01)
  • [26] Prevalence of atrial fibrillation and associated anticoagulant therapy in the nonagenarian population of the Community of Madrid, Spain
    Lahoz, Carlos
    Cardenas, Juan
    Salinero-Fort, Miguel A.
    Mostaza, Jose M.
    [J]. GERIATRICS & GERONTOLOGY INTERNATIONAL, 2019, 19 (03) : 203 - 207
  • [27] The impact of ischaemic stroke on atrial fibrillation-related healthcare cost: a systematic review
    Li, Xue
    Tse, Vicki C.
    Au-Doung, Lung Wai
    Wong, Ian C. K.
    Chan, Esther W.
    [J]. EUROPACE, 2017, 19 (06): : 937 - 946
  • [28] Rationale and design of the GOLDEN BRIDGE II: a cluster-randomised multifaceted intervention trial of an artificial intelligence-based cerebrovascular disease clinical decision support system to improve stroke outcomes and care quality in China
    Li, Zixiao
    Zhang, Xinmiao
    Ding, Lingling
    Jing, Jing
    Gu, Hong-Qiu
    Jiang, Yong
    Meng, Xia
    Du, Chunying
    Wang, Chunjuan
    Wang, Meng
    Xu, Man
    Zhang, Yanxu
    Hu, Meera
    Li, Hao
    Gong, Xiping
    Dong, Kehui
    Zhao, Xingquan
    Wang, Yilong
    Liu, Liping
    Xian, Ying
    Peterson, Eric
    Fonarow, Gregg C.
    Schwamm, Lee H.
    Wang, Yongjun
    [J]. STROKE AND VASCULAR NEUROLOGY, 2024, 9 (06) : 723 - 729
  • [29] Risk Levels and Adverse Clinical Outcomes Among Patients With Nonvalvular Atrial Fibrillation Receiving Oral Anticoagulants
    Lip, Gregory Y. H.
    Murphy, Richard R.
    Sahiar, Farhad
    Ingall, Timothy J.
    Dhamane, Amol D.
    Ferri, Mauricio
    Hlavacek, Patrick
    Preib, Madison T.
    Keshishian, Allison
    Russ, Cristina
    Rosenblatt, Lisa
    Yuce, Huseyin
    Deitelzweig, Steven
    [J]. JAMA NETWORK OPEN, 2022, 5 (08) : E2229333
  • [30] Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach The Euro Heart Survey on Atrial Fibrillation
    Lip, Gregory Y. H.
    Nieuwlaat, Robby
    Pisters, Ron
    Lane, Deirdre A.
    Crijns, Harry J. G. M.
    [J]. CHEST, 2010, 137 (02) : 263 - 272