Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation

被引:4
作者
Molto-Balado, Pedro [1 ,2 ]
Reverte-Villarroya, Silvia [3 ]
Alonso-Barberan, Victor [4 ]
Monclus-Arasa, Cinta [1 ]
Balado-Albiol, Maria Teresa [5 ]
Clua-Queralt, Josep [6 ]
Clua-Espuny, Josep-Lluis [6 ,7 ]
机构
[1] Inst Catala Salut, Primary Hlth Care Ctr Tortosa Oest, Primary Care Serv SAP Terres Ebre, CAP Baix Ebre Avda Colom 16-20, Tortosa 43500, Spain
[2] Univ Rovira & Virgili, Biomed Doctoral Programme, Tortosa 43500, Spain
[3] Rovira & Virgili Univ, Nursing Dept, Biomed Doctoral Programme Campus Terres Ebre, Adv Nursing Res Grp, Av Remolins 13, Tortosa 43500, Spain
[4] Inst Educ Secundaria El Caminas, C Pintor Soler Blasco 3, Castellon de La Plana 12003, Spain
[5] Conselleria Sanitat, Primary Hlth Care Ctr CS Borriana 1, Avinguda Nules 31, Borriana 12530, Spain
[6] Inst Catala Salut, Primary Hlth Care Ctr EAP Tortosa Est, CAP El Temple Placa Carrilet S-N, Tortosa 43500, Spain
[7] Inst Univ Invest Atencio Primaria Jordi Gol IDIAPJ, Res Support Unit Terres Ebre, Ebrictus Res Grp, Tortosa 43500, Spain
基金
英国科研创新办公室;
关键词
atrial fibrillation; major adverse cardiovascular events (MACE); machine learning; artificial intelligence; RISK STRATIFICATION; MORTALITY; STROKE; THROMBOEMBOLISM; CANCER;
D O I
10.3390/technologies12020013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA(2)DS(2)-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 +/- 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 +/- 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.
引用
收藏
页数:14
相关论文
共 63 条
  • [1] Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes
    Abegaz, Tadesse M.
    Baljoon, Ahmead
    Kilanko, Oluwaseun
    Sherbeny, Fatimah
    Ali, Askal Ayalew
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [2] The impact of atherosclerotic vascular disease in predicting a stroke, thromboembolism and mortality in atrial fibrillation patients: a systematic review
    Anandasundaram, B.
    Lane, D. A.
    Apostolakis, S.
    Lip, G. Y. H.
    [J]. JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2013, 11 (05) : 975 - 987
  • [3] ATRIAL FIBRILLATION AND MORTALITY: PROGNOSTIC FACTORS AND THERAPEUTIC STRATEGIES
    Ardashev, A. V.
    Belenkov, Yu. N.
    Matsiukevich, M. Ch.
    Snezhitskiy, V. A.
    [J]. KARDIOLOGIYA, 2021, 61 (02) : 91 - 98
  • [4] Prognostic Potential of the Controlling Nutritional Status (CONUT) Score in Predicting All-Cause Mortality and Major Adverse Cardiovascular Events in Patients With Coronary Artery Disease: A Meta-Analysis
    Arero, Godana
    Arero, Amanuel Godana
    Mohammed, Shimels Hussien
    Vasheghani-Farahani, Ali
    [J]. FRONTIERS IN NUTRITION, 2022, 9
  • [5] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [6] An introduction to machine learning for classification and prediction
    Black, Jason E.
    Kueper, Jacqueline K.
    Williamson, Tyler S.
    [J]. FAMILY PRACTICE, 2022, : 200 - 204
  • [7] Long-term risk of adverse outcomes according to atrial fibrillation type
    Blum, Steffen
    Aeschbacher, Stefanie
    Coslovsky, Michael
    Meyre, Pascal B.
    Reddiess, Philipp
    Ammann, Peter
    Erne, Paul
    Moschovitis, Giorgio
    Di Valentino, Marcello
    Shah, Dipen
    Schlaepfer, Juerg
    Mueller, Rahel
    Beer, Juerg H.
    Kobza, Richard
    Bonati, Leo H.
    Moutzouri, Elisavet
    Rodondi, Nicolas
    Meyer-Zuern, Christine
    Kuehne, Michael
    Sticherling, Christian
    Osswald, Stefan
    Conen, David
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Optimizing indices of atrial fibrillation susceptibility and burden to evaluate atria fibrillation severity, risk and outcomes
    Boriani, Giuseppe
    Vitolo, Marco
    Diemberger, Igor
    Proietti, Marco
    Valenti, Anna Chiara
    Malavasi, Vincenzo Livio
    Lip, Gregory Y. H.
    [J]. CARDIOVASCULAR RESEARCH, 2021, 117 (07) : 1 - 21
  • [9] Major adverse cardiovascular event definitions used in observational analysis of administrative databases: a systematic review
    Bosco, Elliott
    Hsueh, Leon
    McConeghy, Kevin W.
    Gravenstein, Stefan
    Saade, Elie
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [10] The progression in atrial fibrillation patients with COPD: a systematic review and meta-analysis
    Chen, Xiaoying
    Lin, Meiling
    Wang, Wei
    [J]. ONCOTARGET, 2017, 8 (60) : 102420 - 102427