Neural Implicit k-Space for Binning-Free Non-Cartesian Cardiac MR Imaging

被引:18
作者
Huang, Wenqi [1 ]
Li, Hongwei Bran [1 ,2 ]
Pan, Jiazhen [1 ]
Cruz, Gastao [3 ]
Rueckert, Daniel [1 ,4 ]
Hammernik, Kerstin [1 ,4 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Univ Zurich, Zurich, Switzerland
[3] Univ Michigan, Ann Arbor, MI USA
[4] Imperial Coll London, Dept Comp, London, England
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023 | 2023年 / 13939卷
关键词
Image Reconstruction; Non-Cartesian MRI; Cardiac MRI; Neural Implicit Functions; Deep Learning; k-Space Interpolation; SENSE;
D O I
10.1007/978-3-031-34048-2_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation. We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR. (Code available: https://github.com/wenqihuang/NIK MRI).
引用
收藏
页码:548 / 560
页数:13
相关论文
共 32 条
[1]   Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging [J].
Akcakaya, Mehmet ;
Moeller, Steen ;
Weingaertner, Sebastian ;
Ugurbil, Kamil .
MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) :439-453
[2]  
Amiranashvili T, 2022, PR MACH LEARN RES, V172, P22
[3]   Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Tancik, Matthew ;
Hedman, Peter ;
Martin-Brualla, Ricardo ;
Srinivasan, Pratul P. .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5835-5844
[4]   Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion [J].
Chibane, Julian ;
Alldieck, Thiemo ;
Pons-Moll, Gerard .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6968-6979
[5]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[6]   Learning a variational network for reconstruction of accelerated MRI data [J].
Hammernik, Kerstin ;
Klatzer, Teresa ;
Kobler, Erich ;
Recht, Michael P. ;
Sodickson, Daniel K. ;
Pock, Thomas ;
Knoll, Florian .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (06) :3055-3071
[7]   Deep low-Rank plus sparse network for dynamic MR imaging [J].
Huang, Wenqi ;
Ke, Ziwen ;
Cui, Zhuo-Xu ;
Cheng, Jing ;
Qiu, Zhilang ;
Jia, Sen ;
Ying, Leslie ;
Zhu, Yanjie ;
Liang, Dong .
MEDICAL IMAGE ANALYSIS, 2021, 73
[8]   What Makes for Automatic Reconstruction of Pulmonary Segments [J].
Kuang, Kaiming ;
Zhang, Li ;
Li, Jingyu ;
Li, Hongwei ;
Chen, Jiajun ;
Du, Bo ;
Yang, Jiancheng .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I, 2022, 13431 :495-505
[9]   NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images [J].
Mildenhall, Ben ;
Hedman, Peter ;
Martin-Brualla, Ricardo ;
Srinivasan, Pratul P. ;
Barron, Jonathan T. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16169-16178
[10]  
Mildenhall B, 2022, COMMUN ACM, V65, P99, DOI 10.1145/3503250