Layer dependency of in-plane thermal conductivity in graphene/hBN van der Waals heterostructures: a molecular dynamics study

被引:1
作者
Chen, Zehua [1 ]
Wang, Kefeng [1 ]
Hao, Zhao [1 ]
Ren, Kailin [1 ]
Yin, Luqiao [1 ]
Guo, Aiying [1 ]
Zhang, Jianhua [1 ]
Lu, Xiuzhen [1 ]
机构
[1] Shanghai Univ, Sch Microelect, Shanghai, Peoples R China
关键词
HEXAGONAL BORON-NITRIDE; HEAT-CONDUCTION; TRANSPORT;
D O I
10.1140/epjp/s13360-023-04522-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Due to their excellent in-plane thermal transport properties, graphene (G), hexagonal boron nitride (hBN), and their heterostructures have broad application prospects in the field of thermal management. The in-plane thermal conductivity (TC) of G/hBN van der Waals (vdW) heterostructures by nonequilibrium molecular dynamics (NEMD) method were investigated in this study. The results show that the TC of G/hBN vdW heterostructures is up to similar to 384 Wm(-1) K-1 at 300 K, an increase of similar to 16% compared to that of monolayer hBN. The TC of multilayer hBN is increased by up to similar to 60% with the addition of 6 layers of graphene. The effect of interlayer coupling strength on the TC of G/hBN vdW heterostructures is related to the number of layers and vertical thermal transport. The TC of the G/hBN vdW heterostructures is decreased by similar to 30-36% from 300 to 500 K. This work provides valuable references for the application of graphene and hBN in electronic devices to solve thermal management problems.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Thermal transport in van der Waals graphene/boron-nitride structure: a molecular dynamics study [J].
Alborzi, M. Sadegh ;
Rajabpour, Ali .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (09)
[2]   Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure [J].
Argentero, Giacomo ;
Mittelberger, Andreas ;
Monazam, Mohammad Reza Ahmadpour ;
Cao, Yang ;
Pennycook, Timothy J. ;
Mangler, Clemens ;
Kramberger, Christian ;
Kotakoski, Jani ;
Geim, A. K. ;
Meyer, Jannik C. .
NANO LETTERS, 2017, 17 (03) :1409-1416
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Nested boron nitride and carbon-boron nitride nanocones [J].
Baowan, D. ;
Hill, J. M. .
MICRO & NANO LETTERS, 2007, 2 (02) :46-49
[5]   High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion [J].
Cai, Qiran ;
Scullion, Declan ;
Gan, Wei ;
Falin, Alexey ;
Zhang, Shunying ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Chen, Ying ;
Santos, Elton J. G. ;
Li, Lu Hua .
SCIENCE ADVANCES, 2019, 5 (06)
[6]   Substrate coupling suppresses size dependence of thermal conductivity in supported graphene [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANOSCALE, 2013, 5 (02) :532-536
[7]   Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures [J].
Chen, Yang ;
Zhang, Yingyan ;
Cai, Kun ;
Jiang, Jinwu ;
Zheng, Jin-Cheng ;
Zhao, Junhua ;
Wei, Ning .
CARBON, 2017, 117 :399-410
[8]   Stacking in Bulk and Bilayer Hexagonal Boron Nitride [J].
Constantinescu, Gabriel ;
Kuc, Agnieszka ;
Heine, Thomas .
PHYSICAL REVIEW LETTERS, 2013, 111 (03)
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)