Relation-aware Graph Contrastive Learning

被引:0
作者
Li, Bingshi [1 ]
Li, Jin [1 ]
Fu, Yang-Geng [1 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, 2 Wulongjiang North Ave, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; graph representation learning; contrastive learning; self-supervised learning;
D O I
10.1142/S0129626423400078
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Over the past few years, graph contrastive learning (GCL) has gained great success in processing unlabeled graph-structured data, but most of the existing GCL methods are based on instance discrimination task which typically learns representations by minimizing the distance between two versions of the same instance. However, different from images, which are assumed to be independently and identically distributed, graphs present relational information among data instances, in which each instance is related to others by links. Furthermore, the relations are heterogeneous in many cases. The instance discrimination task cannot make full use of the relational information inherent in the graph-structured data. To solve the above-mentioned problems, this paper proposes a relation-aware graph contrastive learning method, called RGCL. Aiming to capture the most important heterogeneous relations in the graph, RGCL explicitly models the edges, and then pulls semantically similar pairs of edges together and pushes dissimilar ones apart with contrastive regularization. By exploiting the full potential of the relationship among nodes, RGCL overcomes the limitations of previous GCL methods based on instance discrimination. The experimental results demonstrate that the proposed method outperforms a series of graph contrastive learning frameworks on widely used benchmarks, which justifies the effectiveness of our work.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Graph4Web: A relation-aware graph attention network for web service classification
    Zhao, Kunsong
    Liu, Jin
    Xu, Zhou
    Liu, Xiao
    Xue, Lei
    Xie, Zhiwen
    Zhou, Yuxuan
    Wang, Xin
    JOURNAL OF SYSTEMS AND SOFTWARE, 2022, 190
  • [22] Graph Contrastive Learning with Constrained Graph Data Augmentation
    Xu, Shaowu
    Wang, Luo
    Jia, Xibin
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10705 - 10726
  • [23] Graph Contrastive Learning with Constrained Graph Data Augmentation
    Shaowu Xu
    Luo Wang
    Xibin Jia
    Neural Processing Letters, 2023, 55 : 10705 - 10726
  • [24] Graph Contrastive Learning with Adaptive Augmentation
    Zhu, Yanqiao
    Xu, Yichen
    Yu, Feng
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2069 - 2080
  • [25] Graph contrastive learning with consistency regularization
    Lee, Soohong
    Lee, Sangho
    Lee, Jaehwan
    Lee, Woojin
    Son, Youngdoo
    PATTERN RECOGNITION LETTERS, 2024, 181 : 43 - 49
  • [26] Towards Effective and Robust Graph Contrastive Learning With Graph Autoencoding
    Li, Wen-Zhi
    Wang, Chang-Dong
    Lai, Jian-Huang
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 868 - 881
  • [27] Social-aware graph contrastive learning for recommender systems
    Zhang, Yuanyuan
    Zhu, Junwu
    Zhang, Yonglong
    Zhu, Yi
    Zhou, Jialuo
    Xie, Yaling
    APPLIED SOFT COMPUTING, 2024, 158
  • [28] Intelligible graph contrastive learning with attention-aware for recommendation
    Mo, Xian
    Zhao, Zihang
    He, Xiaoru
    Qi, Hang
    Liu, Hao
    NEUROCOMPUTING, 2025, 614
  • [29] Graph Contrastive Learning with Knowledge Transfer for Recommendation
    Zhang, Baoxin
    Yang, Dan
    Liu, Yang
    Zhang, Yu
    ENGINEERING LETTERS, 2024, 32 (03) : 477 - 487
  • [30] Multi-level graph contrastive learning
    Shao, Pengpeng
    Tao, Jianhua
    NEUROCOMPUTING, 2024, 570