Dynamics of Current-Sharing Within a REBCO Tape-Stack Cable

被引:7
作者
Rogers, J. S. [1 ,2 ]
May, G. D. [1 ,2 ]
Coats, C. D. [1 ,2 ]
McIntyre, P. M. [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Phys, College Stn, TX 77845 USA
[2] Accelerator Technol Corp, College Stn, TX 77845 USA
关键词
Superconducting cables; Windings; Superconducting magnets; Power cables; Wires; Magnetic fields; High-temperature superconductors; Accelerator magnets; superconducting magnets; HTS coils; no-insulation coils; superconducting coils;
D O I
10.1109/TASC.2023.3245999
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current redistribution in a non-insulating REBCO tape-stack cable may enable the use of such a cable in a high field dipole without provision for transposition of the constituent tapes. As current is increased in the REBCO cable a dynamic resistance arises in the superconducting layer near operation at critical current. The critical current of each tape in the stack is determined by the local magnetic field variation within the cable. The superconducting-normal transition in REBCO occurs over a working range of current and, within that range, the longitudinal Ohmic electric field produces a transverse electric field between adjacent tapes with different critical currents. Circuit models indicate that, as a given tape approaches critical operation, current will naturally redistribute to neighboring tapes with higher current carrying capacity due to the dynamic rise in resistivity thus preventing premature quench. A multi-scale model is being developed to study the dynamics of current-sharing, the limits of stability, and the impact of fluctuations in critical-current density along each tape.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
[Anonymous], SUPERPOWER 2G HTS HO
[2]  
Ballarino A., 2014, PROC 5 INT PART ACCE, P974
[3]   Understanding quench in no-insulation (NI) REBCO magnets through experiments and simulations [J].
Bhattarai, Kabindra R. ;
Kim, Kwanglok ;
Kim, Kwangmin ;
Radcliff, Kyle ;
Hu, Xinbo ;
Im, Chaemin ;
Painter, Thomas ;
Dixon, Iain ;
Larbalestier, David ;
Lee, SangGap ;
Hahn, Seungyong .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2020, 33 (03)
[4]   Quench in a pancake coil wound with REBCO Roebel cable: model and validation [J].
Cavallucci, Lorenzo ;
Breschi, Marco ;
Ribani, Pier Luigi ;
Zhang, Qingbo ;
Yang, Yifeng .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2021, 34 (10)
[5]   Design of a Helium-Free Test Cryostat for Superconducting Wires, Cables, and Windings [J].
Coats, Cannon ;
Rogers, John Scott, Jr. ;
McIntyre, Peter .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
[6]   Towards 20 T Hybrid Accelerator Dipole Magnets [J].
Ferracin, P. ;
Ambrosio, G. ;
Arbelaez, D. ;
Brouwer, L. ;
Barzi, E. ;
Cooley, L. ;
Garcia Fajardo, L. ;
Gupta, R. ;
Juchno, M. ;
Kashikhin, V. ;
Marinozzi, V. ;
Novitski, I. ;
Rochepault, E. ;
Stern, J. ;
Zlobin, A. ;
Zucchi, N. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (06)
[7]   Roebel cables from REBCO coated conductors: a one-century-old concept for the superconductivity of the future [J].
Goldacker, Wilfried ;
Grilli, Francesco ;
Pardo, Enric ;
Kario, Anna ;
Schlachter, Sonja I. ;
Vojenciak, Michal .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2014, 27 (09)
[8]  
Gupta R., 2016, U.S. Patent, Patent No. 9793036
[9]   45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet [J].
Hahn, Seungyong ;
Kim, Kwanglok ;
Kim, Kwangmin ;
Hu, Xinbo ;
Painter, Thomas ;
Dixon, Iain ;
Kim, Seokho ;
Bhattarai, Kabindra R. ;
Noguchi, So ;
Jaroszynski, Jan ;
Larbalestier, David C. .
NATURE, 2019, 570 (7762) :496-+
[10]  
Hahn S, 2011, IEEE T APPL SUPERCON, V21, P1592, DOI [10.1109/TASC.2010.2093492, 10.1109/tasc.2010.2093492]