Unraveling the (4+1)-dimensional Davey-Stewartson-KadomtsevPetviashvili equation: Exploring soliton solutions via multiple techniques

被引:32
作者
Rehman, Hamood Ur [1 ]
Said, Ghada S. [2 ]
Amer, Aamna [1 ]
Ashraf, Hameed [1 ]
Tharwat, M. M. [2 ]
Abdel-Aty, Mahmoud [3 ,4 ,5 ]
Elazab, Nasser S. [6 ]
Osman, M. S. [6 ,7 ]
机构
[1] Univ Okara, Dept Math, Okara, Pakistan
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf 62511, Egypt
[3] Chung Hua Univ, Dept Comp Sci & Informat Engn, 707 WuFu Rd, Hsinchu 30012, Taiwan
[4] Ahlia Univ, Grad Studies & Res, POB 10878, Manama, Bahrain
[5] Sohag Univ, Fac Sci, Math Dept, POB 82524, Sohag, Egypt
[6] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
[7] Umm Al Qura Univ, Fac Appl Sci, Math Dept, Mecca 21955, Saudi Arabia
关键词
Davey-Stewartson-Kadomtsev-Petviashvili; (DSKP) equation; Solitons; The Sardar subequation method; New Kudryashov's method; (1/v(zeta); v; '(zeta)/v(zeta))method; TRAVELING-WAVE SOLUTIONS; MODELS;
D O I
10.1016/j.aej.2024.01.058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The (4+1)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation is explored in the present work, revealing its complex dynamics and solitary wave solutions. Modeling ocean and tidal waves, particularly tsunami and long water waves, depends significantly on this nonlinear equation. Additionally, these models can be used to simulate internal and external waves in rivers and oceans as well as wave packets in water with a finite depth. The Sardar subequation method, new Kudryashov's method, and (1/v(zeta),v '(zeta)/v(zeta)) method are investigated to discover novel solitary wave solutions in the terms of hyperbolic, trigonometric and rational functions. A wide variety of solitons, as dark, bright, periodic, singular, combined dark-singular solitons and, combined dark-bright are obtained by these techniques. By taking accurate parameter values, certain three-dimensional and two-dimensional graphs are plotted to improve the physical description of solutions. The intriguing field of nonlinear waves and dynamic systems is signaled to readers by this work, which suggests a major advancement in understanding the intricate and unexpected behavior of this model.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 47 条
[1]  
Abdel-Gawad HI, 2013, KYUNGPOOK MATH J, V53, P661
[2]   Numerical simulation by using the spectral collocation optimization method associated with Vieta-Lucas polynomials for a fractional model of non-Newtonian fluid [J].
Adel, M. ;
Assiri, T. A. ;
Khader, M. M. ;
Osman, M. S. .
RESULTS IN PHYSICS, 2022, 41
[3]   Some new exact solutions of (4+1)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation [J].
Ahmad, Israr ;
Jalil, Abdul ;
Ullah, Aman ;
Ahmad, Shabir ;
De la Sen, Manuel .
RESULTS IN PHYSICS, 2023, 45
[4]   Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method [J].
Akbar, M. Ali ;
Akinyemi, Lanre ;
Yao, Shao-Wen ;
Jhangeer, Adil ;
Rezazadeh, Hadi ;
Khater, Mostafa M. A. ;
Ahmad, Hijaz ;
Inc, Mustafa .
RESULTS IN PHYSICS, 2021, 25
[5]   New optical solitons of perturbed nonlinear Schrodinger-Hirota equation with spatio-temporal dispersion [J].
Akinyemi, Lanre ;
Rezazadeh, Hadi ;
Shi, Qiu-Hong ;
Inc, Mustafa ;
Khater, Mostafa M. A. ;
Ahmad, Hijaz ;
Jhangeer, Adil ;
Akbar, M. Ali .
RESULTS IN PHYSICS, 2021, 29
[6]   New exact traveling wave solutions of the (4+1)-dimensional Fokas equation [J].
Al-Amr, Mohammed O. ;
El-Ganaini, Shoukry .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) :1274-1287
[7]  
Alharthi M.S., 2022, J OCEAN ENG SCI
[8]   New soliton configurations for two different models related to the nonlinear Schrodinger equation through a graded-index waveguide [J].
Almusawa, Hassan ;
Alam, Md. Nur ;
Fayz-Al-Asad, Md. ;
Osman, M. S. .
AIP ADVANCES, 2021, 11 (06)
[9]   Cubic-quartic optical solitons of the complex Ginzburg-Landau equation: A novel approach [J].
Arnous, Ahmed H. ;
Nofal, Taher A. ;
Biswas, Anjan ;
Yildirim, Yakup ;
Asiri, Asim .
NONLINEAR DYNAMICS, 2023, 111 (21) :20201-20216
[10]  
2021, Journal of Statistics Applications & Probability, V10, P11, DOI [10.18576/jsap/100102, 10.18576/jsap/100102, DOI 10.18576/JSAP/100102]