A Positive Solution for a Weighted p-Laplace Equation with Hardy-Sobolev's Critical Exponent

被引:1
作者
Razani, Abdolrahman [1 ]
Costa, Gustavo S. [2 ]
Figueiredo, Giovany M. [3 ]
机构
[1] Imam Khomeini Int Univ, Dept Pure Math, Fac Sci, Qazvin 3414896818, Iran
[2] Univ Fed Maranhao, Dept Matemat, CCET, BR-65080805 Sao Luis, MA, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Subcritical growth; Critical exponent; Caffarelli-Kohn-Nirenberg inequality; Laplace operator; Degenerate elliptic problem; ELLIPTIC-EQUATIONS; EXISTENCE; INEQUALITIES;
D O I
10.1007/s40840-024-01657-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, considering-infinity <a<N-pp,a <= e <= a+1,d=1+a-eandp & lowast;:= p & lowast;(a,e)=Np/N-dp, the existence of positive solution of a weighted p-Laplace equation involving vanishing potentials -Delta(ap)u+V(x)|x|-(ep & lowast;)|u|(p-2)u=|x(|-ep & lowast;)f(u) in R(N)is proved, where the potential V can vanish at infinity with exponential decayandfis a function with subcritical growth of classC1.We use Del Pino & Felmer's arguments to overcome the lack of compactness and the Moser iteration method with Caffarelli-Kohn-Nirenberg inequality to obtain estimates of the solution in L infinity(R-N).
引用
收藏
页数:22
相关论文
共 25 条
[1]   Existence of solutions for a class of elliptic equations in RN with vanishing potentials [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5555-5568
[2]  
Alves CO, 2011, ADV NONLINEAR STUD, V11, P265
[3]  
Alves MJ, 2015, ILLINOIS J MATH, V59, DOI 10.1215/ijm/1475266397
[4]  
Alves MJ., 2022, Electron. J. Differ. Equ, V43, P1
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]   Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in RN [J].
Bastos, Waldemar D. ;
Miyagaki, Olimpio H. ;
Vieira, Ronei S. .
MILAN JOURNAL OF MATHEMATICS, 2014, 82 (02) :213-231
[7]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[8]   WEIGHTED POINCARE AND SOBOLEV INEQUALITIES AND ESTIMATES FOR WEIGHTED PEANO MAXIMAL FUNCTIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) :1191-1226
[9]  
Costa D.G., 2021, Topol. Methods Nonlinear Anal.
[10]   Existence and concentration of positive solutions for a critical p&q equation [J].
Costa, Gustavo S. ;
Figueiredo, Giovany M. .
ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) :243-267