LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation

被引:124
|
作者
Xu, Guoping [1 ]
Zhang, Xuan [1 ]
He, Xinwei [2 ]
Wu, Xinglong [1 ]
机构
[1] Wuhan Inst Technol, Sch Comp Sci & Engn, Hubei Key Lab Intelligent Robot, Wuhan 430205, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Hubei, Peoples R China
关键词
Medical Image Segmentation; Transformer; Convolutional Neural Network;
D O I
10.1007/978-981-99-8543-2_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image segmentation plays an essential role in developing computer-assisted diagnosis and treatment systems, yet it still faces numerous challenges. In the past few years, Convolutional Neural Networks (CNNs) have been successfully applied to the task of medical image segmentation. Regrettably, due to the locality of convolution operations, these CNN-based architectures have their limitations in learning global context information in images, which might be crucial to the success of medical image segmentation. Meanwhile, the vision Transformer (ViT) architectures own the remarkable ability to extract long-range semantic features with the shortcoming of their computation complexity. To make medical image segmentation more efficient and accurate, we present a novel light-weight architecture named LeViT-UNet, which integrates multi-stage Transformer blocks in the encoder via LeViT, aiming to explore the effectiveness of fusion between local and global features together. Our experiments on two challenging segmentation benchmarks indicate that the proposed LeViT-UNet achieved competitive performance compared with various state-of-the-art methods in terms of efficiency and accuracy, suggesting that LeViT can be a faster feature encoder for medical images segmentation. LeViT-UNet-384, for instance, achieves Dice similarity coefficient (DSC) of 78.53% and 90.32% with a segmentation speed of 85 frames per second (FPS) in the Synapse and ACDC datasets, respectively. Therefore, the proposed architecture could be beneficial for prospective clinic trials conducted by the radiologists. Our source codes are publicly available at https://github.com/apple1986/LeViT_UNet.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [41] DEA-UNet: a dense-edge-attention UNet architecture for medical image segmentation
    Zeng, Zhenhuan
    Fan, Chaodong
    Xiao, Leyi
    Qu, Xilong
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [42] MLFA-UNet: A multi-level feature assembly UNet for medical image segmentation
    Garbaz, Anass
    Oukdacha, Yassine
    Charfi, Said
    El Ansari, Mohamed
    Koutti, Lahcen
    Salihoun, Mouna
    METHODS, 2024, 232 : 52 - 64
  • [43] VM-UNET-V2: Rethinking Vision Mamba UNet for Medical Image Segmentation
    Zhang, Mingya
    Yu, Yue
    Jin, Sun
    Gu, Limei
    Ling, Tingsheng
    Tao, Xianping
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 335 - 346
  • [44] Simpler and Faster Watershed Medical Image Segmentation Algorithm
    Kum, O.
    Lee, H.
    Kim, J.
    Song, T.
    Park, K.
    Han, Y.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [45] GSAC-UFormer: Groupwise Self-Attention Convolutional Transformer-Based UNet for Medical Image Segmentation
    Garbaz, Anass
    Oukdach, Yassine
    Charfi, Said
    El Ansari, Mohamed
    Koutti, Lahcen
    Salihoun, Mouna
    COGNITIVE COMPUTATION, 2025, 17 (02)
  • [46] LIT-Unet: a lightweight and effective model for medical image segmentation
    Wang, Ru
    Kou, Qiqi
    Dou, Lina
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (04) : 878 - 887
  • [47] NAS-Unet: Neural Architecture Search for Medical Image Segmentation
    Weng, Yu
    Zhou, Tianbao
    Li, Yujie
    Qiu, Xiaoyu
    IEEE ACCESS, 2019, 7 : 44247 - 44257
  • [48] EMED-UNet: An Efficient Multi-Encoder-Decoder Based UNet for Medical Image Segmentation
    Shah, Kashish D.
    Patel, Dhaval K.
    Thaker, Minesh P.
    Patel, Harsh A.
    Saikia, Manob Jyoti
    Ranger, Bryan J.
    IEEE ACCESS, 2023, 11 : 95253 - 95266
  • [49] Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution
    Cai, Yimin
    Long, Yuqing
    Han, Zhenggong
    Liu, Mingkun
    Zheng, Yuchen
    Yang, Wei
    Chen, Liming
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [50] DMFC-UFormer: Depthwise multi-scale factorized convolution transformer-based UNet for medical image segmentation
    Garbaz, Anass
    Oukdach, Yassine
    Charfi, Said
    El Ansari, Mohamed
    Koutti, Lahcen
    Salihoun, Mouna
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 101