LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation

被引:127
作者
Xu, Guoping [1 ]
Zhang, Xuan [1 ]
He, Xinwei [2 ]
Wu, Xinglong [1 ]
机构
[1] Wuhan Inst Technol, Sch Comp Sci & Engn, Hubei Key Lab Intelligent Robot, Wuhan 430205, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Hubei, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII | 2024年 / 14432卷
关键词
Medical Image Segmentation; Transformer; Convolutional Neural Network;
D O I
10.1007/978-981-99-8543-2_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image segmentation plays an essential role in developing computer-assisted diagnosis and treatment systems, yet it still faces numerous challenges. In the past few years, Convolutional Neural Networks (CNNs) have been successfully applied to the task of medical image segmentation. Regrettably, due to the locality of convolution operations, these CNN-based architectures have their limitations in learning global context information in images, which might be crucial to the success of medical image segmentation. Meanwhile, the vision Transformer (ViT) architectures own the remarkable ability to extract long-range semantic features with the shortcoming of their computation complexity. To make medical image segmentation more efficient and accurate, we present a novel light-weight architecture named LeViT-UNet, which integrates multi-stage Transformer blocks in the encoder via LeViT, aiming to explore the effectiveness of fusion between local and global features together. Our experiments on two challenging segmentation benchmarks indicate that the proposed LeViT-UNet achieved competitive performance compared with various state-of-the-art methods in terms of efficiency and accuracy, suggesting that LeViT can be a faster feature encoder for medical images segmentation. LeViT-UNet-384, for instance, achieves Dice similarity coefficient (DSC) of 78.53% and 90.32% with a segmentation speed of 85 frames per second (FPS) in the Synapse and ACDC datasets, respectively. Therefore, the proposed architecture could be beneficial for prospective clinic trials conducted by the radiologists. Our source codes are publicly available at https://github.com/apple1986/LeViT_UNet.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [1] TransCUNet: UNet cross fused transformer for medical image segmentation
    Jiang, Shen
    Li, Jinjiang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [2] CSWin-UNet: Transformer UNet with cross-shaped windows for medical image segmentation
    Liu, Xiao
    Gao, Peng
    Yu, Tao
    Wang, Fei
    Yuan, Ru-Yue
    INFORMATION FUSION, 2025, 113
  • [3] LATrans-Unet: Improving CNN-Transformer with Location Adaptive for Medical Image Segmentation
    Lin, Qiqin
    Yao, Junfeng
    Hong, Qingqi
    Cao, Xianpeng
    Zhou, Rongzhou
    Xie, Weixing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 223 - 234
  • [4] TAC-UNet: transformer-assisted convolutional neural network for medical image segmentation
    He, Jingliu
    Ma, Yuqi
    Yang, Mingyue
    Yang, Wensong
    Wu, Chunming
    Chen, Shanxiong
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (12) : 8824 - 8839
  • [5] Multiresolution Aggregation Transformer UNet Based on Multiscale Input and Coordinate Attention for Medical Image Segmentation
    Chen, Shaolong
    Qiu, Changzhen
    Yang, Weiping
    Zhang, Zhiyong
    SENSORS, 2022, 22 (10)
  • [6] Dual Encoders Neural Network for Medical Image Segmentation
    Wang, Xin
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 905 - 909
  • [7] SwinE-UNet3+: swin transformer encoder network for medical image segmentation
    Zou, Ping
    Wu, Jian-Sheng
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2023, 12 (01) : 99 - 105
  • [8] SwinE-UNet3+: swin transformer encoder network for medical image segmentation
    Ping Zou
    Jian-Sheng Wu
    Progress in Artificial Intelligence, 2023, 12 : 99 - 105
  • [9] MSCT-UNET: multi-scale contrastive transformer within U-shaped network for medical image segmentation
    Xi, Heran
    Dong, Haoji
    Sheng, Yue
    Cui, Hui
    Huang, Chengying
    Li, Jinbao
    Zhu, Jinghua
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (01)
  • [10] A Novel Elastomeric UNet for Medical Image Segmentation
    Cai, Sijing
    Wu, Yi
    Chen, Guannan
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14