Automatic snoring detection using a hybrid 1D-2D convolutional neural network

被引:5
|
作者
Li, Ruixue [1 ]
Li, Wenjun [1 ]
Yue, Keqiang [1 ]
Zhang, Rulin [1 ]
Li, Yilin [1 ]
机构
[1] Hangzhou Dianzi Univ, Key Lab RF Circuits & Syst, Hangzhou, Zhejiang, Peoples R China
关键词
SLEEP-APNEA; TIME-SERIES; CLASSIFICATION; SIGNALS; SOUNDS; SEGMENTATION;
D O I
10.1038/s41598-023-41170-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Snoring, as a prevalent symptom, seriously interferes with life quality of patients with sleep disordered breathing only (simple snorers), patients with obstructive sleep apnea (OSA) and their bed partners. Researches have shown that snoring could be used for screening and diagnosis of OSA. Therefore, accurate detection of snoring sounds from sleep respiratory audio at night has been one of the most important parts. Considered that the snoring is somewhat dangerously overlooked around the world, an automatic and high-precision snoring detection algorithm is required. In this work, we designed a non-contact data acquire equipment to record nocturnal sleep respiratory audio of subjects in their private bedrooms, and proposed a hybrid convolutional neural network (CNN) model for the automatic snore detection. This model consists of a one-dimensional (1D) CNN processing the original signal and a two-dimensional (2D) CNN representing images mapped by the visibility graph method. In our experiment, our algorithm achieves an average classification accuracy of 89.3%, an average sensitivity of 89.7%, an average specificity of 88.5%, and an average AUC of 0.947, which surpasses some state-of-the-art models trained on our data. In conclusion, our results indicate that the proposed method in this study could be effective and significance for massive screening of OSA patients in daily life. And our work provides an alternative framework for time series analysis.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK
    Al-Taani, Ahmad T.
    Al-Dagamseh, Ishraq T.
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2023, 9 (02): : 118 - 136
  • [22] Automatic detection of welding defects using the convolutional neural network
    Sizyakin, Roman
    Voronin, Viacheslav
    Gapon, Nikolay
    Zelensky, Aleksandr
    Pizurica, Aleksandra
    AUTOMATED VISUAL INSPECTION AND MACHINE VISION III, 2019, 11061
  • [23] Automatic Bridge Crack Detection Using a Convolutional Neural Network
    Xu, Hongyan
    Su, Xiu
    Wang, Yi
    Cai, Huaiyu
    Cui, Kerang
    Chen, Xiaodong
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [24] 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT
    Hamidian, Sardar
    Sahiner, Berkman
    Petrick, Nicholas
    Pezeshk, Aria
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [25] Hotspot Prediction Using 1D Convolutional Neural Network
    Syarifudin, Mohammad Anang
    Novitasari, Dian Candra Rini
    Marpaung, Faridawaty
    Wahyudi, Noor
    Hapsari, Dian Puspita
    Supriyati, Endang
    Farida, Yuniar
    Amin, Faris Muslihul
    Nugraheni, R. R. Diah
    Ilham
    Nariswari, Rinda
    Setiawan, Fajar
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 845 - 853
  • [26] Arrhythmia Classification using 2D Convolutional Neural Network
    Rohmantri, Robby
    Surantha, Nico
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (04) : 201 - 208
  • [27] Automatic pedicles detection using convolutional neural network in a 3D spine reconstruction from biplanar radiographs
    Bakhous, Christine
    Aubert, Benjamin
    Vazquez, Carlos
    Cresson, Thierry
    Parent, Stefan
    De Guise, Jacques
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [28] Deep 3D Convolutional Neural Network For Automatic Cancer Tissue Detection Using Multispectral Photoacoustic Imaging
    Jnawali, Kamal
    Chinni, Bhargava
    Dogra, Vikram
    Sinha, Saugata
    Rao, Navalgund
    MEDICAL IMAGING 2019: ULTRASONIC IMAGING AND TOMOGRAPHY, 2019, 10955
  • [29] Automatic Large Vessel Occlusion Detection On Computed Tomography Angiography Using A 3D Convolutional Neural Network
    Golan, Rotem
    Cimflova, Petra
    Ospel, Johanna Maria
    Bala, Fouzi
    Elebute, Ibukun
    Duszynski, Chris
    Sojoudi, Alireza
    Neto, Luis A. Souto Maior
    El-Hariri, Houssam
    Mousavi, Seyed Hossein
    Menon, Bijoy K.
    STROKE, 2022, 53
  • [30] 2D and 3D Face Recognition Using Convolutional Neural Network
    Hu, Huiying
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    Molton, Michael
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 133 - 138