Effect of constrained inter-granular regions on the inverse Hall-petch phenomena

被引:10
作者
Darling, K. A. [1 ]
Hornbuckle, B. C. [1 ]
Marvel, C. J. [2 ,3 ]
Hammond, V. H. [1 ]
Solanki, K. [4 ]
机构
[1] US Army, Combat Capabil Dev Command Army Res Lab, Army Res Directorate, Met Branch, Aberdeen Proving Ground, MD 21005 USA
[2] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA
[3] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[4] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2023年 / 875卷
基金
美国国家科学基金会;
关键词
Microstructural stability; Inverse Hall petch; Nanocrystalline; Grain size; CU-TA ALLOY; NANOCRYSTALLINE METALS; MICROSTRUCTURAL EVOLUTION; MECHANICAL-PROPERTIES; CREEP RESISTANCE; STRENGTH; BREAKDOWN; BEHAVIOR; ALUMINUM; NI;
D O I
10.1016/j.msea.2023.145125
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The paper makes an effort to lay out a critical assessment of grain size and its role in limiting strength gains in stable nanocrystalline (NC) metals. In particular, this study uses copper-tantalum binary alloys, in which the predominate mechanisms of grain boundary sliding and rotation are shut down, to decipher the breakdown of classical Hall-Petch behavior and its underlining mechanisms. Through varying grain sizes and tantalum concentrations, the results show Cu-Ta's strength exceeds the traditional strength limits anticipated when strictly applying smaller grain size translates to greater strength than that from the Hall-Petch relationship for NC Cu. Within this work, we also highlight the consistent linear behavior holding up to the point of losing full crystallinity given this alloy's ability to constrain failures occurring within other non-stabilized NC systems.
引用
收藏
页数:7
相关论文
共 49 条
[1]   HALL-PETCH RELATIONS FOR MULTILAYERED MATERIALS [J].
ANDERSON, PM ;
LI, C .
NANOSTRUCTURED MATERIALS, 1995, 5 (03) :349-362
[2]   Review of thermal stability of nanomaterials [J].
Andrievski, R. A. .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (04) :1449-1460
[3]   The role of Ta on twinnability in nanocrystalline Cu-Ta alloys [J].
Bhatia, M. A. ;
Rajagopalan, M. ;
Darling, K. A. ;
Tschopp, M. A. ;
Solanki, K. N. .
MATERIALS RESEARCH LETTERS, 2017, 5 (01) :48-54
[4]   TENSILE STRENGTH OF WHISKERS [J].
BRENNER, SS .
JOURNAL OF APPLIED PHYSICS, 1956, 27 (12) :1484-1491
[5]   Interface controlled diffusional creep of nanocrystalline pure copper [J].
Cai, B ;
Kong, QP ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 1999, 41 (07) :755-759
[6]   Strain-Rate Sensitivity of Nanocrystalline Cu-10Ta to 700,000/s [J].
Casem, D. ;
Ligda, J. ;
Walter, T. ;
Darling, K. ;
Hornbuckle, B. .
JOURNAL OF DYNAMIC BEHAVIOR OF MATERIALS, 2020, 6 (01) :24-33
[7]   Stable microstructure in a nanocrystalline copper-tantalum alloy during shock loading [J].
Chad Hornbuckle, B. ;
Williams, Cyril L. ;
Dean, Steven W. ;
Zhou, Xuyang ;
Kale, Chaitanya ;
Turnage, Scott A. ;
Clayton, John D. ;
Thompson, Gregory B. ;
Giri, Anit K. ;
Solanki, Kiran N. ;
Darling, Kristopher A. .
COMMUNICATIONS MATERIALS, 2020, 1 (01)
[8]   ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS [J].
CHOKSHI, AH ;
ROSEN, A ;
KARCH, J ;
GLEITER, H .
SCRIPTA METALLURGICA, 1989, 23 (10) :1679-1683
[9]   Nanocrystalline electrodeposited Ni: microstructure and tensile properties [J].
Dalla Torre, F ;
Van Swygenhoven, H ;
Victoria, M .
ACTA MATERIALIA, 2002, 50 (15) :3957-3970
[10]   Nanocrystalline material with anomalous modulus of resilience and springback effect [J].
Darling, K. A. ;
Kale, C. ;
Turnage, S. ;
Hornbuckle, B. C. ;
Luckenbaugh, T. L. ;
Grendahl, S. ;
Solanki, K. N. .
SCRIPTA MATERIALIA, 2017, 141 :36-40