Coexistence of Rashba effect and spin-valley coupling in TiX2 (X = Te, S, and Se) based heterostructures

被引:2
作者
Bano, Amreen [1 ,2 ]
Major, Dan Thomas [1 ,2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, Inst Nanotechnol & Adv Mat BINA, IL-5290002 Ramat Gan, Israel
关键词
GRAPHENE;
D O I
10.1063/5.0142404
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spin-orbit coupling (SOC) combined with broken inversion symmetry plays a key role in inducing Rashba effect. The combined spontaneous polarization and Rashba effect enables controlling a material's spin degrees of freedom electrically. In this work, we investigated an electronic band structure for several combinations of TiX2 monolayers (X = Te, S, and Se): TiTe2/TiSe2, TiTe2/TiS2, and TiSe2/TiS2. Based on the observed orbital hybridization between the different monolayers in these heterostructures (HSs), we conclude that the most significant Rashba splitting occurs in TiSe2/TiS2. Subsequently, we used fluorine (F) as an adatom over the surface of TiSe2/TiS2 at hollow and top sites of the surface to enhance the Rashba intensity, as the F adatom induces polarization due to the difference in charge distribution. Furthermore, by increasing the number of F atoms on the surface, we reinforced the band splitting, i.e., we observe Rashba splitting accompanied by Zeeman splitting at the valence-band edge states. Berry curvatures at K and K ' with equal and opposite nature confirm the existence of valley polarization. The computationally observed properties suggest that these HSs are promising candidates for spin-valley Hall effect devices and other spintronic applications.
引用
收藏
页数:7
相关论文
共 56 条
  • [1] Zeeman-type spin splitting in nonmagnetic three-dimensional compounds
    Acosta, Carlos Mera
    Fazzio, Adalberto
    Dalpian, Gustavo M.
    [J]. NPJ QUANTUM MATERIALS, 2019, 4 (1)
  • [2] Superconductivity and strong correlations in moire flat bands
    Balents, Leon
    Dean, Cory R.
    Efetov, Dmitri K.
    Young, Andrea F.
    [J]. NATURE PHYSICS, 2020, 16 (07) : 725 - 733
  • [3] Recent Advances in Two-Dimensional Materials beyond Graphene
    Bhimanapati, Ganesh R.
    Lin, Zhong
    Meunier, Vincent
    Jung, Yeonwoong
    Cha, Judy
    Das, Saptarshi
    Xiao, Di
    Son, Youngwoo
    Strano, Michael S.
    Cooper, Valentino R.
    Liang, Liangbo
    Louie, Steven G.
    Ringe, Emilie
    Zhou, Wu
    Kim, Steve S.
    Naik, Rajesh R.
    Sumpter, Bobby G.
    Terrones, Humberto
    Xia, Fengnian
    Wang, Yeliang
    Zhu, Jun
    Akinwande, Deji
    Alem, Nasim
    Schuller, Jon A.
    Schaak, Raymond E.
    Terrones, Mauricio
    Robinson, Joshua A.
    [J]. ACS NANO, 2015, 9 (12) : 11509 - 11539
  • [4] Focus on the Rashba effect
    Bihlmayer, G.
    Rader, O.
    Winkler, R.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [5] Enhanced Rashba spin-orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles
    Bihlmayer, G.
    Bluegel, S.
    Chulkov, E. V.
    [J]. PHYSICAL REVIEW B, 2007, 75 (19)
  • [6] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] BYCHKOV YA, 1984, JETP LETT+, V39, P78
  • [8] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [9] Signatures of tunable superconductivity in a trilayer graphene moire superlattice
    Chen, Guorui
    Sharpe, Aaron L.
    Gallagher, Patrick
    Rosen, Ilan T.
    Fox, Eli J.
    Jiang, Lili
    Lyu, Bosai
    Li, Hongyuan
    Watanabe, Kenji
    Taniguchi, Takashi
    Jung, Jeil
    Shi, Zhiwen
    Goldhaber-Gordon, David
    Zhang, Yuanbo
    Wang, Feng
    [J]. NATURE, 2019, 572 (7768) : 215 - +
  • [10] Tunable Rashba spin splitting in Janus transition-metal dichalcogenide monolayers via charge doping
    Chen, Jiajia
    Wu, Kai
    Ma, Huanhuan
    Hu, Wei
    Yang, Jinlong
    [J]. RSC ADVANCES, 2020, 10 (11) : 6388 - 6394