RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2

被引:32
作者
Bravo, Jack P. K. [1 ]
Hallmark, Thomson [2 ]
Naegle, Bronson [2 ]
Beisel, Chase L. [3 ,4 ]
Jackson, Ryan N. [2 ]
Taylor, David W. [1 ,5 ,6 ,7 ]
机构
[1] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA
[2] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA
[3] Helmholtz Ctr Infect Res HZI, Helmholtz Inst RNA Based Infect Res HIRI, Wurzburg, Germany
[4] Univ Wurzburg, Med Fac, Wurzburg, Germany
[5] Univ Texas Austin, Interdisciplinary Life Sci Grad Program, Austin, TX 78712 USA
[6] Univ Texas Austin, Ctr Syst & Synthet Biol, Austin, TX 78712 USA
[7] Dell Med Sch, LIVESTRONG Canc Inst, Austin, TX 78712 USA
基金
欧洲研究理事会;
关键词
D O I
10.1038/s41586-022-05560-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cas12a2 is a CRISPR-associated nuclease that performs RNA-guided, sequence-nonspecific degradation of single-stranded RNA, single-stranded DNA and double-stranded DNA following recognition of a complementary RNA target, culminating in abortive infection1. Here we report structures of Cas12a2 in binary, ternary and quaternary complexes to reveal a complete activation pathway. Our structures reveal that Cas12a2 is autoinhibited until binding a cognate RNA target, which exposes the RuvC active site within a large, positively charged cleft. Double-stranded DNA substrates are captured through duplex distortion and local melting, stabilized by pairs of 'aromatic clamp' residues that are crucial for double-stranded DNA degradation and in vivo immune system function. Our work provides a structural basis for this mechanism of abortive infection to achieve population-level immunity, which can be leveraged to create rational mutants that degrade a spectrum of collateral substrates.
引用
收藏
页码:582 / +
页数:20
相关论文
共 53 条
[31]   RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems [J].
Meeske, Alexander J. ;
Marraffini, Luciano A. .
MOLECULAR CELL, 2018, 71 (05) :791-+
[32]   Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers [J].
Niewoehner, Ole ;
Garcia-Doval, Carmela ;
Rostol, Jakob T. ;
Berk, Christian ;
Schwede, Frank ;
Bigler, Laurent ;
Hall, Jonathan ;
Marraffini, Luciano A. ;
Jinek, Martin .
NATURE, 2017, 548 (7669) :543-+
[33]   Antiviral activity of bacterial TIR domains via immune signalling molecules [J].
Ofir, Gal ;
Herbst, Ehud ;
Baroz, Maya ;
Cohen, Daniel ;
Millman, Adi ;
Doron, Shany ;
Tal, Nitzan ;
Malheiro, Daniel B. A. ;
Malitsky, Sergey ;
Amitai, Gil ;
Sorek, Rotem .
NATURE, 2021, 600 (7887) :116-+
[34]   DNA interference states of the hypercompact CRISPR-Casφ effector [J].
Pausch, Patrick ;
Soczek, Katarzyna M. ;
Herbst, Dominik A. ;
Tsuchida, Connor A. ;
Al-Shayeb, Basem ;
Banfield, Jillian F. ;
Nogales, Eva ;
Doudna, Jennifer A. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2021, 28 (08) :652-+
[35]   UCSF ChimeraX: Structure visualization for researchers, educators, and developers [J].
Pettersen, Eric F. ;
Goddard, Thomas D. ;
Huang, Conrad C. ;
Meng, Elaine C. ;
Couch, Gregory S. ;
Croll, Tristan I. ;
Morris, John H. ;
Ferrin, Thomas E. .
PROTEIN SCIENCE, 2021, 30 (01) :70-82
[36]  
Punjani Ali, 2021, Microscopy and Microanalysis, V27, P1156, DOI 10.1017/S1431927621004360
[37]   Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction [J].
Punjani, Ali ;
Zhang, Haowei ;
Fleet, David J. .
NATURE METHODS, 2020, 17 (12) :1214-+
[38]  
Punjani A, 2017, NAT METHODS, V14, P290, DOI [10.1038/NMETH.4169, 10.1038/nmeth.4169]
[39]   The Card1 nuclease provides defence during type III CRISPR immunity [J].
Rostol, Jakob T. ;
Xie, Wei ;
Kuryavyi, Vitaly ;
Maguin, Pascal ;
Kao, Kevin ;
Froom, Ruby ;
Patel, Dinshaw J. ;
Marraffini, Luciano A. .
NATURE, 2021, 590 (7847) :624-629
[40]  
Sambrook J, 2001, Molecular cloning: A laboratory manual, V3rd, DOI DOI 10.1086/394015