Prefabrication of "Trinity " Functional Binary Layers on a Silicon Surface to Develop High-Performance Lithium-Ion Batteries

被引:45
作者
Huang, Weibo [1 ,2 ]
Wang, Yan [1 ,2 ,3 ]
Lv, Linze [1 ,2 ]
Li, Xiang [1 ,2 ]
Wang, Yueyue [1 ,2 ]
Zheng, Wei [3 ]
Zheng, Honghe [1 ,2 ,3 ]
机构
[1] Soochow Univ, Coll Energy, Suzhou 215006, Jiangsu, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[3] Huaying New Energy Mat Co, Suzhou 215000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; silicon anode; solid-electrolyte interphase; azodicarbonamide; 4-nitrobenzenesulfonyl fluoride; IN-SITU CONSTRUCTION; ANODES;
D O I
10.1021/acsnano.2c10698
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The silicon (Si) anode is widely recognized as the most prospective next-generation anode. To promote the application of Si electrodes, it is imperative to address persistent interface side reactions caused by the huge volume expansion of Si particles. Herein, we introduce beneficial groups of the optimized binder and electrolyte on the Si surface by a codissolution method, realizing a "trinity " functional layer composed of azodicarbonamide and 4-nitrobenzenesulfonyl fluoride (AN). The "trinity " functional AN interfacial layer induces beneficial reductive decomposition reactions of the electrolyte and forms a hybrid solid-electrolyte interphase (SEI) skin layer with uniformly distributed organic/inorganic components, which can enhance the mechanical strength of the overall electrode, restrain harmful electrolyte depletion reactions, and maintain efficient ion/electron transport. Hence, the optimized Si@AN11 electrode retains 1407.9 mAh g(-1) after 500 cycles and still delivers 1773.5 mAh g(-1) at 10 C. In stark contrast, Si anodes have almost no reserved capacity at the same test conditions. Besides, the LiNi0.5Co0.2Mn0.3O2//Si@AN11 full-cell maintains 141.2 mAh g(-1) after 350 cycles. This work demonstrates the potential of developing multiple composite artificial layers to modulate the SEI properties of various next-generation electrodes.
引用
收藏
页码:2669 / 2678
页数:10
相关论文
共 46 条
[1]   Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithium-Ion Batteries [J].
Ai, Qing ;
Li, Deping ;
Guo, Jianguang ;
Hou, Guangmei ;
Sun, Qing ;
Sun, Qidi ;
Xu, Xiaoyan ;
Zhai, Wei ;
Zhang, Lin ;
Feng, Jinkui ;
Si, Pengchao ;
Lou, Jun ;
Ci, Lijie .
ADVANCED MATERIALS INTERFACES, 2019, 6 (21)
[2]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   Electrolyte Solvation Engineering toward High-Rate and Low-Temperature Silicon-Based Batteries [J].
Cao, Zhang ;
Zheng, Xueying ;
Zhou, Mi ;
Zhao, Tong ;
Lv, Linze ;
Li, Yuchen ;
Wang, Zhongqiang ;
Luo, Wei ;
Zheng, Honghe .
ACS ENERGY LETTERS, 2022, 7 (10) :3581-3592
[4]   Tailoring a multifunctional, boron and fluoride-enriched solid-electrolyte interphase precursor towards high-rate and stable-cycling silicon anodes [J].
Cao, Zhang ;
Zheng, Xueying ;
Wang, Yan ;
Huang, Weibo ;
Li, Yuchen ;
Huang, Yunhui ;
Zheng, Honghe .
NANO ENERGY, 2022, 93
[5]   Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase [J].
Cao, Zhang ;
Zheng, Xueying ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
ADVANCED MATERIALS, 2021, 33 (38)
[6]   Molecular design of a multifunctional binder via grafting and crosslinking for high performance silicon anodes [J].
Cao, Zhang ;
Zheng, Xueying ;
Huang, Weibo ;
Wang, Yan ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (13) :8416-8424
[7]   Rational Design of Electrolytes for Long-Term Cycling of Si Anodes over a Wide Temperature Range [J].
Chae, Sujong ;
Kwak, Won-Jin ;
Han, Kee Sung ;
Li, Shuang ;
Engelhard, Mark H. ;
Hu, Jiangtao ;
Wang, Chongmin ;
Li, Xiaolin ;
Zhang, Ji-Guang .
ACS ENERGY LETTERS, 2021, 6 (02) :387-394
[8]   Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode [J].
Chen, Song ;
Chen, Zhuo ;
Xu, Xingyan ;
Cao, Chuanbao ;
Xia, Min ;
Luo, Yunjun .
SMALL, 2018, 14 (12)
[9]   Emerging Organic Surface Chemistry for Si Anodes in Lithium-Ion Batteries: Advances, Prospects, and Beyond [J].
Chen, Zidong ;
Soltani, Askar ;
Chen, Yungui ;
Zhang, Qiaobao ;
Davoodi, Ali ;
Hosseinpour, Saman ;
Peukert, Wolfgang ;
Liu, Wei .
ADVANCED ENERGY MATERIALS, 2022, 12 (32)
[10]   Design Criteria for Silicon-Based Anode Binders in Half and Full Cells [J].
Deng, Li ;
Zheng, Yun ;
Zheng, Xiaomei ;
Or, Tyler ;
Ma, Qianyi ;
Qian, Lanting ;
Deng, Yaping ;
Yu, Aiping ;
Li, Juntao ;
Chen, Zhongwei .
ADVANCED ENERGY MATERIALS, 2022, 12 (31)