Progress and Perspective of Controlling Li Dendrites Growth in All-Solid-State Li Metal Batteries via External Physical Fields

被引:9
作者
Yao, Jianhua [1 ,2 ,3 ]
Zhu, Guoxi [1 ,2 ,3 ]
Dong, Kang [4 ]
Osenberg, Markus [5 ]
Hilger, Andre [5 ]
Markoetter, Henning [6 ]
Ju, Jiangwei [1 ,2 ,3 ]
Sun, Fu [1 ,2 ,3 ]
Manke, Ingo [5 ]
Cui, Guanglei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Ind Energy Storage Res Inst, Qingdao 266101, Peoples R China
[2] Shandong Energy Inst, Qingdao 266101, Peoples R China
[3] Qingdao New Energy Shandong Lab, Qingdao 266101, Peoples R China
[4] Chinese Acad Sci, Multidisciplinary Res Div, Inst High Energy Phys, Beijing 100049, Peoples R China
[5] Helmholtz Zentrum Berlin Mat & Energie, Inst Appl Mat, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[6] Bundesanstalt Mat Forsch & Prufung BAM, Unter Eichen 87, D-12205 Berlin, Germany
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2024年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
Li dendrites; Li dendrites penetration mechanisms; solid electrolytes; solid-state batteries; DEPOSITED LITHIUM FILMS; X-RAY TOMOGRAPHY; MECHANICAL-PROPERTIES; IONIC-CONDUCTIVITY; SHORT-CIRCUIT; MORPHOLOGICAL EVOLUTION; ELECTROLYTE; PROPAGATION; INTERFACE; TEMPERATURE;
D O I
10.1002/aesr.202300165
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Li dendrites penetration through solid electrolytes (SEs) challenges the development of solid-state Li batteries (SSLBs). To date, significant efforts are devoted to understand the mechanistic dynamics of Li dendrites nucleation, growth, and propagation in SEs, and various strategies that aim to alleviate and even inhibit Li dendrite formation have been proposed. Nevertheless, most of these conventional strategies require either additional material processing steps or new materials/layers that eventually increase battery cost and complexity. In contrast, using external fields, such as mechanical force, temperature physical field, electric field, pulse current, and even magnetic field to regulate Li dendrites penetration through SEs, seems to be one of the most cost-effective strategies. This review focuses on the current research progress of utilizing external physical fields in regulating Li dendrites growth in SSLBs. For this purpose, the mechanical properties of Li and SEs, as well as the experimental results that visually track Li penetration dynamics, are reviewed. Finally, the review ends with remaining open questions in future studies of Li dendrites growth and penetration in SEs. It is hoped this review can shed some light on understanding the complex Li dendrite issues in SSLBs and potentially guide their rational design for further development. This review focuses on the current research progress of utilizing a variety of external physical fields to regulate lithium dendrites penetration in all solid-state batteries. To this end, the mechanical properties of lithium and solid electrolytes as well as the experimental results that visually track lithium penetration dynamics are also reviewed.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:44
相关论文
共 184 条
[1]   Chemomechanics: Friend or foe of the ?AND problem? of solid-state batteries [J].
Ahmad, Zeeshan ;
Venturi, Victor ;
Sripad, Shashank ;
Viswanathan, Venkatasubramanian .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2022, 26 (04)
[2]   Mapping Irreversible Electrochemical Processes on the Nanoscale: Ionic Phenomena in Li Ion Conductive Glass Ceramics [J].
Arruda, Thomas M. ;
Kumar, Amit ;
Kalinin, Sergei V. ;
Jesse, Stephen .
NANO LETTERS, 2011, 11 (10) :4161-4167
[3]   How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression [J].
Aslam, Muhammad Kashif ;
Niu, Yubin ;
Hussain, Tanveer ;
Tabassum, Hassina ;
Tang, Wenwen ;
Xu, Maowen ;
Ahuja, Rajeev .
NANO ENERGY, 2021, 86
[4]   Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteries [J].
Athanasiou, Christos E. ;
Liu, Xing ;
Jin, Mok Yun ;
Nimon, Eugene ;
Visco, Steve ;
Lee, Cholho ;
Park, Myounggu ;
Yun, Junnyeong ;
Padture, Nitin P. ;
Gao, Huajian ;
Sheldon, Brian W. .
CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (04)
[5]   Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) :20493-20505
[6]   Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte [J].
Baranowski, Lauryn L. ;
Heveran, Chelsea M. ;
Ferguson, Virginia L. ;
Stoldt, Conrad R. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (43) :29573-29579
[7]   First cross-section observation of an all solid-state lithium-ion "Nanobattery" by transmission electron microscopy [J].
Brazier, A. ;
Dupont, L. ;
Dantras-Laffont, L. ;
Kuwata, N. ;
Kawamura, J. ;
Tarascon, J. -M. .
CHEMISTRY OF MATERIALS, 2008, 20 (06) :2352-2359
[8]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[9]   Effect of nanopatterning on mechanical properties of Lithium anode [J].
Campbell, Colin ;
Lee, Yong Min ;
Cho, Kuk Young ;
Lee, Young-Gi ;
Lee, Byeongdu ;
Phatak, Charudatta ;
Hong, Seungbum .
SCIENTIFIC REPORTS, 2018, 8
[10]   Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Qiang ;
Natan, Avi ;
Xiang, Pengyang ;
Zhu, Hongli .
MATTER, 2020, 3 (01) :57-94