Expert Variability and Deep Learning Performance in Spinal Cord Lesion Segmentation for Multiple Sclerosis Patients

被引:4
作者
Walsh, Ricky [1 ]
Meuree, Cedric [1 ]
Kerbrat, Anne [1 ,2 ]
Masson, Arthur [1 ]
Hussein, Burhan Rashid [1 ]
Gaubert, Malo [1 ,3 ]
Galassi, Francesca [1 ]
Combes, Benoit [1 ]
机构
[1] Univ Rennes, INRIA, CNRS, Inserm,IRISA,UMR 6074,Empenn ERL,U1228, Rennes, France
[2] Rennes Univ Hosp CHU, Dept Neurol, Rennes, France
[3] Rennes Univ Hosp CHU, Dept Neuroradiol, Rennes, France
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
关键词
Multiple sclerosis; spinal cord; magnetic resonance imaging; lesion segmentation; inter-rater variability; intra-rater variability; deep learning; automated segmentation; INVERSION-RECOVERY; MRI; ALGORITHM; TRUTH;
D O I
10.1109/CBMS58004.2023.00263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple sclerosis (MS) patients often present with lesions in spinal cord magnetic resonance (MR) volumes. However, accurately detecting these lesions is challenging and prone to inter- and intra-rater variability. Deep learning-based methods have the potential to aid clinicians in detecting and segmenting MS lesions, but can also be affected by rater variability. This study assesses the inter- and intra-rater variability in manual segmentation of spinal cord lesions, and evaluates raters and a state-of-the-art nnU-Net model against a ground truth (GT) segmentation of a senior expert. Four experts segmented twelve spinal cord MR volumes from six patients twice, at a time distance of two weeks. Considerable inter- and intra-rater variability were observed, with the total number of detected lesions ranging from 28 to 60, depending on the rater. Moreover, the segmented volumes of individual lesions varied substantially between raters. All raters and the model achieved high precision when evaluated against the senior expert GT, but sensitivity was notably lower. These results motivate the need for more sensitive automated methods to aid clinicians in lesion detection, and suggest that consideration should be given to inter-rater variability when training and evaluating automated methods.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 22 条
[1]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   Evaluating White Matter Lesion Segmentations with Refined SOrensen-Dice Analysis [J].
Carass, Aaron ;
Roy, Snehashis ;
Gherman, Adrian ;
Reinhold, Jacob C. ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handels, Heinz ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Pham, Dzung L. ;
Crainiceanu, Ciprian M. ;
Calabresi, Peter A. ;
Prince, Jerry L. ;
Roncal, William R. Gray ;
Shinohara, Russell T. ;
Oguz, Ipek .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[4]   A Clinically-Compatible Workflow for Computer-Aided Assessment of Brain Disease Activity in Multiple Sclerosis Patients [J].
Combes, Benoit ;
Kerbrat, Anne ;
Pasquier, Guillaume ;
Commowick, Olivier ;
Le Bon, Brandon ;
Galassi, Francesca ;
L'Hostis, Philippe ;
El Graoui, Nora ;
Chouteau, Raphael ;
Cordonnier, Emmanuel ;
Edan, Gilles ;
Ferre, Jean-Christophe .
FRONTIERS IN MEDICINE, 2021, 8
[5]   Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure [J].
Commowick, Olivier ;
Istace, Audrey ;
Kain, Michael ;
Laurent, Baptiste ;
Leray, Florent ;
Simon, Mathieu ;
Pop, Sorina Camarasu ;
Girard, Pascal ;
Ameli, Roxana ;
Ferre, Jean-Christophe ;
Kerbrat, Anne ;
Tourdias, Thomas ;
Cervenansky, Frederic ;
Glatard, Tristan ;
Beaumont, Jeremy ;
Doyle, Senan ;
Forbes, Florence ;
Knight, Jesse ;
Khademi, April ;
Mahbod, Amirreza ;
Wang, Chunliang ;
McKinley, Richard ;
Wagner, Franca ;
Muschelli, John ;
Sweeney, Elizabeth ;
Roura, Eloy ;
Llado, Xavier ;
Santos, Michel M. ;
Santos, Wellington P. ;
Silva-Filho, Abel G. ;
Tomas-Fernandez, Xavier ;
Urien, Helene ;
Bloch, Isabelle ;
Valverde, Sergi ;
Cabezas, Mariano ;
Javier Vera-Olmos, Francisco ;
Malpica, Norberto ;
Guttmann, Charles ;
Vukusic, Sandra ;
Edan, Gilles ;
Dojat, Michel ;
Styner, Martin ;
Warfield, Simon K. ;
Cotton, Francois ;
Barillot, Christian .
SCIENTIFIC REPORTS, 2018, 8
[6]   SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data [J].
De Leener, Benjamin ;
Levy, Simon ;
Dupont, Sara M. ;
Fonov, Vladimir S. ;
Stikov, Nikola ;
Collins, D. Louis ;
Callot, Virginie ;
Cohen-Adad, Julien .
NEUROIMAGE, 2017, 145 :24-43
[7]   MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation? [J].
Egger, Christine ;
Opfer, Roland ;
Wang, Chenyu ;
Kepp, Timo ;
Sormani, Maria Pia ;
Spies, Lothar ;
Barnett, Michael ;
Schippling, Sven .
NEUROIMAGE-CLINICAL, 2017, 13 :264-270
[8]   Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks [J].
Gros, Charley ;
De Leener, Benjamin ;
Badji, Atef ;
Maranzano, Josefina ;
Eden, Dominique ;
Dupont, Sara M. ;
Talbott, Jason ;
Ren Zhuoquiong ;
Liu, Yaou ;
Granberg, Tobias ;
Ouellette, Russell ;
Tachibana, Yasuhiko ;
Hori, Masaaki ;
Kamiya, Kouhei ;
Chougar, Lydia ;
Stawiarz, Leszek ;
Hillert, Jan ;
Bannier, Ellise ;
Kerbrat, Anne ;
Edan, Gilles ;
Labauge, Pierre ;
Callot, Virginie ;
Pelletier, Jean ;
Audoin, Bertrand ;
Rasoanandrianina, Henitsoa ;
Brisset, Jean-Christophe ;
Valsasina, Paola ;
Rocca, Maria A. ;
Filippi, Massimo ;
Bakshi, Rohit ;
Tauhid, Shahamat ;
Prados, Ferran ;
Yiannakas, Marios ;
Kearney, Hugh ;
Ciccarelli, Olga ;
Smith, Seth ;
Treaba, Constantino Andrada ;
Mainero, Caterina ;
Lefeuvre, Jennifer ;
Reich, Daniel S. ;
Nair, Govind ;
Auclair, Vincent ;
McLaren, Donald G. ;
Martin, Allan R. ;
Fehlings, Michael G. ;
Vahdat, Shahabeddin ;
Khatibi, Ali ;
Doyon, Julien ;
Shepherd, Timothy ;
Charlson, Erik .
NEUROIMAGE, 2019, 184 :901-915
[9]  
Hussein B. R., 2022, STUDY LOSS FUNCTIONS
[10]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+