The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression

被引:22
作者
Li, Mengyuan [1 ]
Jiang, Ping [1 ]
Wei, Shuhua [1 ]
Wang, Junjie [1 ]
Li, Chunxiao [1 ]
机构
[1] Peking Univ Third Hosp, Dept Radiat Oncol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
macrophages; tumor-associated macrophages; tumor microenvironment; crosstalk; cancer immunotherapy; REGULATORY T-CELLS; ENDOTHELIAL GROWTH-FACTOR; NATURAL-KILLER-CELLS; DENDRITIC CELLS; BREAST-CANCER; HEPATOCELLULAR-CARCINOMA; COLORECTAL-CANCER; B-CELLS; PROMOTE PHAGOCYTOSIS; ANTIGEN PRESENTATION;
D O I
10.3389/fimmu.2023.1113312
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Recent studies have revealed that tumor-associated macrophages are the most abundant stromal cells in the tumor microenvironment and play an important role in tumor initiation and progression. Furthermore, the proportion of macrophages in the tumor microenvironment is associated with the prognosis of patients with cancer. Tumor-associated macrophages can polarize into anti-tumorigenic phenotype (M1) and pro-tumorigenic phenotype (M2) by the stimulation of T-helper 1 and T-helper 2 cells respectively, and then exert opposite effects on tumor progression. Besides, there also is wide communication between tumor-associated macrophages and other immune compositions, such as cytotoxic T cells, regulatory T cells, cancer-associated fibroblasts, neutrophils and so on. Furthermore, the crosstalk between tumor-associated macrophages and other immune cells greatly influences tumor development and treatment outcomes. Notably, many functional molecules and signaling pathways have been found to participate in the interactions between tumor-associated macrophages and other immune cells and can be targeted to regulate tumor progression. Therefore, regulating these interactions and CAR-M therapy are considered to be novel immunotherapeutic pathways for the treatment of malignant tumors. In this review, we summarized the interactions between tumor-associated macrophages and other immune compositions in the tumor microenvironment and the underlying molecular mechanisms and analyzed the possibility to block or eradicate cancer by regulating tumor-associated macrophage-related tumor immune microenvironment.
引用
收藏
页数:23
相关论文
共 250 条
[41]   Macrophage Regulation of Tumor Responses to Anticancer Therapies [J].
De Palma, Michele ;
Lewis, Claire E. .
CANCER CELL, 2013, 23 (03) :277-286
[42]   CD4+ T Cells Regulate Pulmonary Metastasis of Mammary Carcinomas by Enhancing Protumor Properties of Macrophages [J].
DeNardo, David G. ;
Barreto, Jairo B. ;
Andreu, Pauline ;
Vasquez, Lesley ;
Tawfik, David ;
Kolhatkar, Nikita ;
Coussens, Lisa M. .
CANCER CELL, 2009, 16 (02) :91-102
[43]   Cell-Membrane Immunotherapy Based on Natural Killer Cell Membrane Coated Nanoparticles for the Effective Inhibition of Primary and Abscopal Tumor Growth [J].
Deng, Guanjun ;
Sun, Zhihong ;
Li, Sanpeng ;
Peng, Xinghua ;
Li, Wenjun ;
Zhou, Lihua ;
Ma, Yifan ;
Gong, Ping ;
Cai, Lintao .
ACS NANO, 2018, 12 (12) :12096-12108
[44]   Tissue-Infiltrating Neutrophils Constitute the Major In Vivo Source of Angiogenesis-Inducing MMP-9 in the Tumor Microenvironment [J].
Deryugina, Elena I. ;
Zajac, Ewa ;
Juncker-Jensen, Anna ;
Kupriyanova, Tatyana A. ;
Welter, Lisa ;
Quigley, James P. .
NEOPLASIA, 2014, 16 (10) :771-788
[45]   The SIRPα-CD47 immune checkpoint in NK cells [J].
Deuse, Tobias ;
Hu, Xiaomeng ;
Agbor-Enoh, Sean ;
Jang, Moon K. ;
Alawi, Malik ;
Saygi, Ceren ;
Gravina, Alessia ;
Tediashvili, Grigol ;
Nguyen, Vinh Q. ;
Liu, Yuan ;
Valantine, Hannah ;
Lanier, Lewis L. ;
Schrepfer, Sonja .
JOURNAL OF EXPERIMENTAL MEDICINE, 2021, 218 (03)
[46]   Extracellular ATP and P2 purinergic signalling in the tumour microenvironment [J].
Di Virgilio, Francesco ;
Sarti, Alba Clara ;
Falzoni, Simonetta ;
De Marchi, Elena ;
Adinolfi, Elena .
NATURE REVIEWS CANCER, 2018, 18 (10) :601-618
[47]   CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma [J].
Diggs, Laurence P. ;
Ruf, Benjamin ;
Ma, Chi ;
Heinrich, Bernd ;
Cui, Linda ;
Zhang, Qianfei ;
McVey, John C. ;
Wabitsch, Simon ;
Heinrich, Sophia ;
Rosato, Umberto ;
Lai, Walter ;
Subramanyam, Varun ;
Longerich, Thomas ;
Loosen, Sven H. ;
Luedde, Tom ;
Neumann, Ulf Peter ;
Desar, Sabina ;
Kleiner, David ;
Gores, Gregory ;
Wang, Xin Wei ;
Greten, Tim F. .
JOURNAL OF HEPATOLOGY, 2021, 74 (05) :1145-1154
[48]   Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer [J].
Ding, Zhenyu ;
Li, Qing ;
Zhang, Rui ;
Xie, Li ;
Shu, Yang ;
Gao, Song ;
Wang, Peipei ;
Su, Xiaoqing ;
Qin, Yun ;
Wang, Yuelan ;
Fang, Juemin ;
Zhu, Zhongzheng ;
Xia, Xuyang ;
Wei, Guochao ;
Wang, Hui ;
Qian, Hong ;
Guo, Xianling ;
Gao, Zhibo ;
Wang, Yu ;
Wei, Yuquan ;
Xu, Qing ;
Xu, Heng ;
Yang, Li .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2021, 6 (01)
[49]   Design and Efficacy of a Monovalent Bispecific PD-1/CTLA4 Antibody That Enhances CTLA4 Blockade on PD-1+ Activated T Cells [J].
Dovedi, Simon J. ;
Elder, Matthew J. ;
Yang, Chunning ;
Sitnikova, Suzanne, I ;
Irving, Lorraine ;
Hansen, Anna ;
Hair, James ;
Jones, Des C. ;
Hasani, Sumati ;
Wang, Bo ;
Im, Seock-Ah ;
Tran, Ben ;
Subramaniam, Deepa S. ;
Gainer, Shelby D. ;
Vashisht, Kapil ;
Lewis, Arthur ;
Jin, Xiaofang ;
Kentner, Stacy ;
Mulgrew, Kathy ;
Wang, Yaya ;
Overstreet, Michael G. ;
Dodgson, James ;
Wu, Yanli ;
Palazon, Asis ;
Morrow, Michelle ;
Rainey, Godfrey J. ;
Browne, Gareth J. ;
Neal, Frances ;
Murray, Thomas, V ;
Toloczko, Aleksandra D. ;
Dall'Acqua, William ;
Achour, Ikbel ;
Freeman, Daniel J. ;
Wilkinson, Robert W. ;
Mazor, Yariv .
CANCER DISCOVERY, 2021, 11 (05) :1100-1117
[50]   Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors [J].
Duraiswamy, Jaikumar ;
Kaluza, Karen M. ;
Freeman, Gordon J. ;
Coukos, George .
CANCER RESEARCH, 2013, 73 (12) :3591-3603