Finite element analysis of nonlinear reaction-diffusion system of Fitzhugh-Nagumo type with Robin boundary conditions

被引:10
作者
Al-Juaifri, Ghassan A. [1 ,2 ]
Harfash, Akil J. [1 ]
机构
[1] Univ Basrah, Coll Sci, Dept Math, Basrah, Iraq
[2] Univ Kufa, Fac Comp Sci & Math, Dept Math, Kufa, Iraq
关键词
Semi -discrete approximation; Fully discrete approximation; Robin boundary; Fitzhugh-Nagumo; Error bounds; ADDITIONAL CROSS-DIFFUSION; CAHN-HILLIARD EQUATION; KELLER-SEGEL MODEL; APPROXIMATION; WAVES;
D O I
10.1016/j.matcom.2022.07.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigate the numerical analysis of Fitzhugh-Nagumo (FHN) reaction-diffusion equations. The properties of numerical solutions of a semi-discrete and fully-practical piecewise linear finite element technique are provided. Moreover, for a semi-discrete and fully discrete finite element approximation, we establish a priori estimates and error bounds. We also introduce the results of some numerical examples in one and two dimensions, which confirm the theoretical findings of this paper.(c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:486 / 517
页数:32
相关论文
共 37 条
[1]  
Agbavon K.M., 2020, COMPUTATIONAL MATH A, P95
[2]   Construction and analysis of some nonstandard finite difference methods for the FitzHugh-Nagumo equation [J].
Agbavon, Koffi M. ;
Appadu, Appanah Rao .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (05) :1145-1169
[3]   SPIRAL WAVES IN A SURFACE-REACTION - MODEL-CALCULATIONS [J].
BAR, M ;
GOTTSCHALK, N ;
EISWIRTH, M ;
ERTL, G .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (02) :1202-1214
[4]   A MODEL FOR FAST COMPUTER-SIMULATION OF WAVES IN EXCITABLE MEDIA [J].
BARKLEY, D .
PHYSICA D, 1991, 49 (1-2) :61-70
[5]   Finite element approximation of a nonlinear cross-diffusion population model [J].
Barrett, JW ;
Blowey, JF .
NUMERISCHE MATHEMATIK, 2004, 98 (02) :195-221
[6]   AN ERROR BOUND FOR THE FINITE-ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH LOGARITHMIC FREE-ENERGY [J].
BARRETT, JW ;
BLOWEY, JF .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :1-20
[7]   Finite element approximation of the transport of reactive solutes in porous media .1. Error estimates for nonequilibrium adsorption processes [J].
Barrett, JW ;
Knabner, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :201-227
[8]  
Blowey JF., 1992, EUR J APPL MATH, V3, P147, DOI 10.1017/S0956792500000759
[9]  
Ciarlet P. G., 2002, The Finite Element Method for Elliptic Problems
[10]  
CIARLET PG, 1972, ARCH RATION MECH AN, V46, P178