Tanshinone IIA reverses gefitinib resistance in EGFR-mutant lung cancer via inhibition of SREBP1-mediated lipogenesis

被引:3
作者
Zhang, Lei [1 ]
Xu, Chuncao [1 ]
Huang, Junyuan [1 ]
Jiang, Shiqin [1 ]
Qin, Zhiyan [1 ]
Cao, Lin [1 ]
Tan, Guoyao [1 ]
Zhao, Zhongxiang [2 ]
Huang, Min [1 ]
Jin, Jing [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Pharmaceut Sci, Guangzhou, Peoples R China
[2] Guangzhou Univ Chinese Med, Sch Pharmaceut Sci, Guangzhou, Peoples R China
[3] Sun Yat sen Univ, Sch Pharmaceut Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
de novo lipogenesis; gefitinib; non-small cell lung cancer; sterol regulatory element binding protein 1; Tanshinone IIA; CELLS; COMBINATION; METABOLISM; REGULATORS; SECRETION; GROWTH;
D O I
10.1002/ptr.8130
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background and Aim: Gefitinib resistance is an urgent problem to be solved in the treatment of non-small cell lung cancer (NSCLC). Tanshinone IIA (Tan IIA) is one of the main active components of Salvia miltiorrhiza, which exhibits significant antitumor effects. The aim of this study is to explore the reversal effect of Tan IIA on gefitinib resistance in the epidermal growth factor receptor (EGFR)-mutant NSCLC and the underlying mechanism. Experimental Procedure: CCK-8, colony formation assay, and flow cytometry were applied to detect the cytotoxicity, proliferation, and apoptosis, respectively. The changes in lipid profiles were measured by electrospray ionization-mass spectrometry (MS)/MS. Western blot, real-time q-PCR, and immunohistochemical were used to detect the protein and the corresponding mRNA levels. The in vivo antitumor effect was validated by the xenograft mouse model. Key Results: Co-treatment of Tan IIA enhanced the sensitivity of resistant NSCLC cells to gefitinib. Mechanistically, Tan IIA could downregulate the expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream target genes, causing changes in lipid profiles, thereby reversing the gefitinib-resistance in EGFR-mutant NSCLC cells in vitro and in vivo. Conclusions and Implications: Tan IIA improved gefitinib sensitivity via SREBP1-mediated lipogenesis. Tan IIA could be a potential candidate to enhance sensitivity for gefitinib-resistant NSCLC patients.
引用
收藏
页码:1574 / 1588
页数:15
相关论文
共 50 条
[21]   HIF-1α-HPRT1 axis promotes tumorigenesis and gefitinib resistance by enhancing purine metabolism in EGFR-mutant lung adenocarcinoma [J].
Geng, Pengyu ;
Ye, Fei ;
Dou, Peng ;
Hu, Chunxiu ;
He, Jiarui ;
Zhao, Jinhui ;
Li, Qi ;
Bao, Miao ;
Li, Xiangnan ;
Liu, Xinyu ;
Xu, Guowang .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2024, 43 (01)
[22]   Brain metastatic outgrowth and osimertinib resistance are potentiated by RhoA in EGFR-mutant lung cancer [J].
Adua, Sally J. ;
Arnal-Estape, Anna ;
Zhao, Minghui ;
Qi, Bowen ;
Liu, Zongzhi Z. ;
Kravitz, Carolyn ;
Hulme, Heather ;
Strittmatter, Nicole ;
Lopez-Giraldez, Francesc ;
Chande, Sampada ;
Albert, Alexandra E. ;
Melnick, Mary-Ann ;
Hu, Bomiao ;
Politi, Katerina ;
Chiang, Veronica ;
Colclough, Nicola ;
Goodwin, Richard J. A. ;
Cross, Darren ;
Smith, Paul ;
Nguyen, Don X. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[23]   Inhibition of EGFR Signaling and Activation of Mitochondria! Apoptosis Contribute to Tanshinone IIA-Mediated Tumor Suppression in Non-Small Cell Lung Cancer Cells [J].
Gao, Feng ;
Li, Ming ;
Liu, Wenbin ;
Li, Wei .
ONCOTARGETS AND THERAPY, 2020, 13 :2757-2769
[24]   Inhibition of Casein Kinase 1 Alpha Prevents Acquired Drug Resistance to Erlotinib in EGFR-Mutant Non-Small Cell Lung Cancer [J].
Lantermann, Alexandra B. ;
Chen, Dongshu ;
McCutcheon, Kaitlin ;
Hoffman, Greg ;
Frias, Elizabeth ;
Ruddy, David ;
Rakiec, Daniel ;
Korn, Joshua ;
McAllister, Gregory ;
Stegmeier, Frank ;
Meyer, Matthew J. ;
Sharma, Sreenath V. .
CANCER RESEARCH, 2015, 75 (22) :4937-4948
[25]   Paradoxical functions of ZEB1 in EGFR-mutant lung cancer: tumor suppressor and driver of therapeutic resistance [J].
Yochum, Zachary A. ;
Socinski, Mark A. ;
Burns, Timothy F. .
JOURNAL OF THORACIC DISEASE, 2016, 8 (11) :E1528-E1531
[26]   Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy [J].
Kim, Jihye ;
Vasu, Vihas T. ;
Mishra, Rangnath ;
Singleton, Katherine R. ;
Yoo, Minjae ;
Leach, Sonia M. ;
Farias-Hesson, Eveline ;
Mason, Robert J. ;
Kang, Jaewoo ;
Ramamoorthy, Preveen ;
Kern, Jeffrey A. ;
Heasley, Lynn E. ;
Finigan, James H. ;
Tan, Aik Choon .
BIOINFORMATICS, 2014, 30 (17) :2393-2398
[27]   Patient with EGFR-mutant lung cancer harboring de novo MET amplification successfully treated with gefitinib combined with crizotinib [J].
Gu, Zhen-Bang ;
Liao, Ling-Min ;
Yao, Gong-Ji ;
Fang, Ming ;
Huang, Long .
CURRENT PROBLEMS IN CANCER, 2021, 45 (05)
[28]   MERTK activation drives osimertinib resistance in EGFR-mutant non small cell lung cancer [J].
Yan, Dan ;
Huelse, Justus M. ;
Kireev, Dmitri ;
Tan, Zikang ;
Chen, Luxiao ;
Goyal, Subir ;
Wang, Xiaodong ;
Frye, Stephen, V ;
Behera, Madhusmita ;
Schneider, Frank ;
Ramalingam, Suresh S. ;
Owonikoko, Taofeek ;
Earp, H. Shelton ;
DeRyckere, Deborah ;
Graham, Douglas K. .
JOURNAL OF CLINICAL INVESTIGATION, 2022, 132 (15)
[29]   Dihydroartemisinin overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer [J].
Cai, Xueting ;
Miao, Jing ;
Sun, Rongwei ;
Wang, Sainan ;
Molina-Vila, Miguel Angel ;
Chaib, Imane ;
Rosell, Rafael ;
Cao, Peng .
PHARMACOLOGICAL RESEARCH, 2021, 170
[30]   CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: apersonalized molecular surgical therapy [J].
Tang, Huibin ;
Shrager, Joseph B. .
EMBO MOLECULAR MEDICINE, 2016, 8 (02) :83-85