Quantum Low-Density Parity-Check Codes for Modular Architectures

被引:15
作者
Strikis, Armands [1 ,2 ]
Berent, Lucas [3 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX13PH, England
[2] Quantum Mot, 9 Sterling Way, London N7 9HJ, England
[3] Tech Univ Munich, Chair Design Automation, Munich, Germany
来源
PRX QUANTUM | 2023年 / 4卷 / 02期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
ERROR-CORRECTION;
D O I
10.1103/PRXQuantum.4.020321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In efforts to scale the size of quantum computers, modularity plays a central role across most quantum computing technologies. In the light of fault tolerance, this necessitates designing quantum error-correcting codes that are compatible with the connectivity arising from the architectural layouts. In this paper, we aim to bridge this gap by giving a novel way to view and construct quantum low-density parity-check (LDPC) codes tailored for modular architectures. We demonstrate that if the intra-and intermodular qubit connectivity can be viewed as corresponding to some classical or quantum LDPC codes then their hypergraph product code fully respects the architectural connectivity constraints. Finally, we show that relaxed connectivity constraints that allow twists of connections between modules pave a way to construct codes with better parameters.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
Acharya R., ARXIV
[2]   Repeated quantum error detection in a surface code [J].
Andersen, Christian Kraglund ;
Remm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Lacroix, Nathan ;
Norris, Graham J. ;
Gabureac, Mihai ;
Eichler, Christopher ;
Wallraff, Andreas .
NATURE PHYSICS, 2020, 16 (08) :875-+
[3]  
Bravyi SB, 1998, Arxiv, DOI [arXiv:quant-ph/9811052, 10.48550/ARXIV.QUANT-PH/9811052, DOI 10.48550/ARXIV.QUANT-PH/9811052]
[4]   Fusion-based quantum computation [J].
Bartolucci, Sara ;
Birchall, Patrick ;
Bombin, Hector ;
Cable, Hugo ;
Dawson, Chris ;
Gimeno-Segovia, Mercedes ;
Johnston, Eric ;
Kieling, Konrad ;
Nickerson, Naomi ;
Pant, Mihir ;
Pastawski, Fernando ;
Rudolph, Terry ;
Sparrow, Chris .
NATURE COMMUNICATIONS, 2023, 14 (01)
[5]  
Bartolucci S, 2021, Arxiv, DOI arXiv:2101.09310
[6]  
Baspin N, 2022, QUANTUM-AUSTRIA, V6
[7]   Quantifying Nonlocality: How Outperforming Local Quantum Codes Is Expensive [J].
Baspin, Nouedyn ;
Krishna, Anirudh .
PHYSICAL REVIEW LETTERS, 2022, 129 (05)
[8]   Topological quantum error correction with optimal encoding rate [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2006, 73 (06)
[9]  
Bombin H., 2021, arXiv
[10]  
Bravyi S, 2022, Arxiv, DOI arXiv:2209.06841