Towards a scalable discrete quantum generative adversarial neural network

被引:3
作者
Chaudhary, Smit [1 ,2 ]
Huembeli, Patrick [1 ]
MacCormack, Ian [1 ]
Patti, Taylor L. [3 ]
Kossaifi, Jean [3 ]
Galda, Alexey [1 ]
机构
[1] Menten AI, San Francisco, CA 94111 USA
[2] Delft Univ Technol, Delft, Netherlands
[3] NVIDIA, Santa Clara, CA 95051 USA
关键词
quantum machine learning; generative learning; binary data; quantum generative adversarial network; DIVERSITY;
D O I
10.1088/2058-9565/acc4e4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum generative adversarial networks (QGANs) have been studied in the context of quantum machine learning for several years, but there has not been yet a proposal for a fully QGAN with both, a quantum generator and discriminator. We introduce a fully QGAN intended for use with binary data. The architecture incorporates several features found in other classical and quantum machine learning models, which up to this point had not been used in conjunction. In particular, we incorporate classical noise reuploading in the generator, auxiliary qubits in the discriminator to enhance expressivity, and a direct connection between the generator and discriminator circuits, obviating the need to access the generator's probability distribution. We show that, as separate components, the generator and discriminator perform as desired. We empirically demonstrate the expressive power of our model on both synthetic data as well as low energy states of an Ising model. Our demonstrations suggest that the model is not only capable of reproducing discrete training data, but also of potentially generalizing from it.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
Alcazar J., 2021, arXiv
[2]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[3]   Generalization in Quantum Machine Learning: A Quantum Information Standpoint [J].
Banchi, Leonardo ;
Pereira, Jason ;
Pirandola, Stefano .
PRX QUANTUM, 2021, 2 (04)
[4]  
Beer K., 2021, arXiv
[5]   A generative modeling approach for benchmarking and training shallow quantum circuits [J].
Benedetti, Marcello ;
Garcia-Pintos, Delfina ;
Perdomo, Oscar ;
Leyton-Ortega, Vicente ;
Nam, Yunseong ;
Perdomo-Ortiz, Alejandro .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[6]  
Bergholm V, 2022, Arxiv, DOI [arXiv:1811.04968, 10.48550/arXiv.1811.04968]
[7]  
Borras K, 2022, Arxiv, DOI arXiv:2203.01007
[8]  
Bradbury James., 2018, JAX: composable transformations of Python+NumPy programs
[9]  
Bravo-Prieto C, 2022, QUANTUM-AUSTRIA, V6
[10]   Cost function dependent barren plateaus in shallow parametrized quantum circuits [J].
Cerezo, M. ;
Sone, Akira ;
Volkoff, Tyler ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2021, 12 (01)