Multimodal representation learning for predicting molecule-disease relations

被引:14
作者
Wen, Jun [1 ,2 ]
Zhang, Xiang [1 ]
Rush, Everett
Panickan, Vidul A. [1 ,2 ]
Li, Xingyu [1 ]
Cai, Tianrun [2 ,4 ,6 ]
Zhou, Doudou [5 ]
Ho, Yuk-Lam [2 ]
Costa, Lauren [2 ]
Begoli, Edmon [3 ]
Hong, Chuan [2 ]
Gaziano, J. Michael [1 ,2 ,7 ]
Cho, Kelly [1 ,2 ,7 ]
Lu, Junwei [2 ,8 ]
Liao, Katherine P. [1 ,2 ,8 ]
Zitnik, Marinka [1 ,9 ,10 ]
Cai, Tianxi [1 ,2 ,4 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] VA Boston Healthcare Syst, MA02130, Boston, MA 02130 USA
[3] Oak Ridge Natl Lab, DOE, Oak Ridge, TN 37831 USA
[4] Mass Gen Brigham, Boston, MA 02130 USA
[5] Univ Calif, Dept Stat, Davis, CA 95616 USA
[6] Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27708 USA
[7] Brigham & Womens Hosp, Boston, MA 02115 USA
[8] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[9] Broad Inst & Harvard, Cambridge, MA 02142 USA
[10] Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
SARS-COV-2;
D O I
10.1093/bioinformatics/btad085
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Predicting molecule-disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule-molecule, molecule-disease and disease-disease semantic dependencies can potentially improve prediction performance. Methods: We introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations (M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients. Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding space shared by drugs, diseases and other common clinical concepts. To infer molecule-disease relations, M2REMAP combines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects. Results: We extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP overcomes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Repurposing the estrogen receptor modulator raloxifene to treat SARS-CoV-2 infection [J].
Allegretti, Marcello ;
Cesta, Maria Candida ;
Zippoli, Mara ;
Beccari, Andrea ;
Talarico, Carmine ;
Mantelli, Flavio ;
Bucci, Enrico M. ;
Scorzolini, Laura ;
Nicastri, Emanuele .
CELL DEATH AND DIFFERENTIATION, 2022, 29 (01) :156-166
[2]   QSAR Modeling of SARS-CoV MproInhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and Other Drugs as Candidates for Repurposing against SARS-CoV-2 [J].
Alves, Vinicius M. ;
Bobrowski, Tesia ;
Melo-Filho, Cleber C. ;
Korn, Daniel ;
Auerbach, Scott ;
Schmitt, Charles ;
Muratov, Eugene N. ;
Tropsha, Alexander .
MOLECULAR INFORMATICS, 2021, 40 (01)
[3]  
Beam AL, 2020, PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020, P295
[4]  
Bernstein Lawrence R., 2020, Antiviral Chemistry & Chemotherapy, V28, DOI [10.1177/2040206620983780, 10.1177/2040206620983780]
[5]  
Chandak P., 2022, IEEE T KNOWL DATA EN, V10, P67
[6]   Dietary Antioxidant Trans-Cinnamaldehyde Reduced Visfatin-Induced Breast Cancer Progression: In Vivo and In Vitro Study [J].
Chiang, Yi-Fen ;
Chen, Hsin-Yuan ;
Huang, Ko-Chieh ;
Lin, Po-Han ;
Hsia, Shih-Min .
ANTIOXIDANTS, 2019, 8 (12)
[7]   Paroxetine Induces Apoptosis of Human Breast Cancer MCF-7 Cells through Ca2+-and p38 MAP Kinase-Dependent ROS Generation [J].
Cho, Young-Woo ;
Kim, Eun-Jin ;
Nyiramana, Marie Merci ;
Shin, Eui-Jung ;
Jin, Hana ;
Ryu, Ji Hyeon ;
Kang, Kee Ryeon ;
Lee, Gyeong-Won ;
Kim, Hye Jung ;
Han, Jaehee ;
Kang, Dawon .
CANCERS, 2019, 11 (01)
[8]   Innovation in the pharmaceutical industry: New estimates of R&D costs [J].
DiMasi, Joseph A. ;
Grabowski, Henry G. ;
Hansen, Ronald W. .
JOURNAL OF HEALTH ECONOMICS, 2016, 47 :20-33
[9]   Reporting of adverse effects in clinical trials should be improved: Lessons from acute postoperative pain [J].
Edwards, JE ;
McQuay, HJ ;
Moore, RA ;
Collins, SL .
JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 1999, 18 (06) :427-437
[10]   A systematic review and meta-analysis assessing adverse event profile and tolerability of nicergoline [J].
Fioravanti, Mario ;
Nakashima, Taku ;
Xu, Jun ;
Garg, Amit .
BMJ OPEN, 2014, 4 (07)