Hot Extruded Bulk Polycrystalline (Bi1-xSbx)2(Te1-ySey)3 Alloys: Electron Transport and Lattice Thermal Conductivity

被引:2
作者
Masut, Remo A. [1 ]
Andre, Cedric [1 ]
Vasilevskiy, Dimitri [1 ]
机构
[1] Polytech Montreal, Dept Genie Phys, CP 6079,Succ Ctr Ville, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Thermoelectric alloys; hot extrusion; electron transport; thermal conductivity; lattice thermal conductivity; THERMOELECTRIC PROPERTIES; PERFORMANCE;
D O I
10.1007/s11664-022-10041-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hot extruded bulk polycrystalline n-type -(Bi1-xSbx)(2)(Te1-ySey)(3) quaternary alloys with low Sb and Se concentrations (< 10%) are anisotropic materials by virtue of their texture which is a result of severe shearing involved in the extrusion process. Harman-type measurements have provided the electrical and thermal conductivity, Seebeck coefficient, and thermoelectric figure of merit parallel to the extrusion axis, as a function of temperature, in the range similar to 220-420 K. Mobility and carrier concentration were determined by Hall effect measurements along a plane perpendicular to the extrusion axis in the range 15-420 K. Modeling the electronic transport properties allows the determination of the total (including thermodiffusion) electronic contribution to the thermal conductivity. Thus, the lattice thermal conductivity kappa(parallel to), along the extrusion axis, can be obtained with a reasonable degree of accuracy in the range 220-380 K. The results carry a rather large relative uncertainty at higher temperatures as kappa(parallel to). decreases with increasing temperature with a tendency which mimics that observed for the crystalline base compound -Bi2Te3.
引用
收藏
页码:707 / 717
页数:11
相关论文
共 32 条
[1]   Extruded Bismuth-Telluride-Based n-Type Alloys for Waste Heat Thermoelectric Recovery Applications [J].
Andre, C. ;
Vasilevskiy, D. ;
Turenne, S. ;
Masut, R. A. .
JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) :1061-1067
[2]   Highly textured Bi2Te3-based materials for thermoelectric energy conversion [J].
Ben-Yehuda, O. ;
Shuker, R. ;
Gelbstein, Y. ;
Dashevsky, Z. ;
Dariel, M. P. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
[3]  
Dames C., 2006, THERMOELECTRICS HDB, P1
[4]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[5]   THE THERMAL CONDUCTIVITY OF BISMUTH TELLURIDE [J].
GOLDSMID, HJ .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1956, 69 (02) :203-209
[6]   THE PERFORMANCE OF BISMUTH TELLURIDE THERMOJUNCTIONS [J].
GOLDSMID, HJ ;
SHEARD, AR ;
WRIGHT, DA .
BRITISH JOURNAL OF APPLIED PHYSICS, 1958, 9 (09) :365-370
[7]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[8]   Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride [J].
Huang, Bao-Ling ;
Kaviany, Massoud .
PHYSICAL REVIEW B, 2008, 77 (12)
[9]   ANISOTROPIC GALVANOMAGNETIC AND THERMOELECTRIC PROPERTIES OF N-TYPE BI2TE3 SINGLE-CRYSTAL WITH THE COMPOSITION OF A USEFUL THERMOELECTRIC COOLING MATERIAL [J].
KAIBE, H ;
TANAKA, Y ;
SAKATA, M ;
NISHIDA, I .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1989, 50 (09) :945-950
[10]   Mechanical properties of bismuth telluride based alloys with embedded MoS2 nano-particles [J].
Keshavarz, Mohsen K. ;
Vasilevskiy, Dimitri ;
Masut, Remo A. ;
Turenne, Sylvain .
MATERIALS & DESIGN, 2016, 103 :114-121