The skew commutators of Toeplitz operators or Hankel operators on Hardy spaces
被引:0
作者:
Li, Yongning
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Li, Yongning
[1
]
Zheng, Hanyi
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Zheng, Hanyi
[1
]
Ding, Xuanhao
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Ding, Xuanhao
[1
]
机构:
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Let A and B be two bounded linear operators on a Hilbert space. B is called the skew commutator of A if *[A,B]=AB-BA*=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{*}[A, B]=AB-BA<^>{*}=0.$$\end{document} In this paper, we completely characterize when a Toeplitz operator on the Hardy space is a skew commutator of a Hankel operator and when a Hankel operator on the Hardy space is a skew commutator of a Toeplitz operator. Moreover, we also obtain a necessary and sufficient condition for the product of a Hankel operator and a Toeplitz operator to be self-adjoint on the Hardy space.