A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing

被引:46
作者
Kumar, Punit [1 ,2 ]
Huang, Sheng [3 ]
Cook, David H. [1 ,2 ]
Chen, Kai [4 ]
Ramamurty, Upadrasta [3 ,5 ]
Tan, Xipeng [6 ]
Ritchie, Robert O. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
[4] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, State Key Lab Mech Behav Mat, Xian, Peoples R China
[5] ASTAR, Inst Mat Res & Engn, Singapore, Singapore
[6] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
基金
美国国家科学基金会;
关键词
STAINLESS-STEELS; TOUGHNESS; STRENGTH;
D O I
10.1038/s41467-024-45178-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Strengthening materials via conventional "top-down" processes generally involves restricting dislocation movement by precipitation or grain refinement, which invariably restricts the movement of dislocations away from, or towards, a crack tip, thereby severely compromising their fracture resistance. In the present study, a high-entropy alloy Al0.5CrCoFeNi is produced by the laser powder-bed fusion process, a "bottom-up" additive manufacturing process similar to how nature builds structures, with the microstructure resembling a nano-bridged honeycomb structure consisting of a face-centered cubic (fcc) matrix and an interwoven hexagonal net of an ordered body-centered cubic B2 phase. While the B2 phase, combined with high-dislocation density and solid-solution strengthening, provides strength to the material, the nano-bridges of dislocations connecting the fcc cells, i.e., the channels between the B2 phase on the cell boundaries, provide highways for dislocation movement away from the crack tip. Consequently, the nature-inspired microstructure imparts the material with an excellent combination of strength and toughness. Developing superior structural materials has been challenging because of the inherent conflict between their strength and toughness. Here, the authors use 3D-printing to produce a high-entropy alloy with a microstructure resembling nano-bridged honeycomb structure with good strength and toughness.
引用
收藏
页数:9
相关论文
共 40 条
[1]  
[Anonymous], 2013, STANDARD TEST METHOD, DOI DOI 10.1520/E0008
[2]  
[Anonymous], 2013, STANDARD TEST METHOD, P1, DOI [DOI 10.1520/D1238-13, 10.1520/D5865-13, DOI 10.1520/D5865-13, 10.1520/D5373-16.2]
[3]  
ASTM International, 2012, ASTM-Int., P1, DOI [DOI 10.1520/E2860, DOI 10.1520/E0112-12.1.4]
[4]   Fracture and fatigue in additively manufactured metals [J].
Becker, Thorsten Hermann ;
Kumar, Punit ;
Ramamurty, Upadrasta .
ACTA MATERIALIA, 2021, 219
[5]   Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J].
Bertsch, K. M. ;
de Bellefon, G. Meric ;
Kuehl, B. ;
Thoma, D. J. .
ACTA MATERIALIA, 2020, 199 :19-33
[6]   PERSPECTIVE ON THE DEVELOPMENT OF HIGH-TOUGHNESS CERAMICS [J].
EVANS, AG .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (02) :187-206
[7]   Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J].
Feng, Rui ;
Rao, You ;
Liu, Chuhao ;
Xie, Xie ;
Yu, Dunji ;
Chen, Yan ;
Ghazisaeidi, Maryam ;
Ungar, Tamas ;
Wang, Huamiao ;
An, Ke ;
Liaw, Peter K. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Thurston, Keli V. S. ;
Bei, Hongbin ;
Wu, Zhenggang ;
George, Easo P. ;
Ritchie, Robert O. .
NATURE COMMUNICATIONS, 2016, 7
[9]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[10]   Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures [J].
Haglund, A. ;
Koehler, M. ;
Catoor, D. ;
George, E. P. ;
Keppens, V. .
INTERMETALLICS, 2015, 58 :62-64