Efficient Approximate Online Convolutional Dictionary Learning

被引:1
作者
Veshki, Farshad G. [1 ,2 ]
Vorobyov, Sergiy A. [1 ,2 ]
机构
[1] Aalto Univ, Dept Informat & Commun Engn, Espoo 02150, Finland
[2] Nokia, Espoo 11351, Finland
基金
芬兰科学院;
关键词
Training; Dictionaries; Convolutional codes; Convolution; Memory management; Optimization; Machine learning; Convolutional sparse coding; online convolutional dictionary learning; SPARSE; ALGORITHMS;
D O I
10.1109/TCI.2023.3340612
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most existing convolutional dictionary learning (CDL) algorithms are based on batch learning, where the dictionary filters and the convolutional sparse representations are optimized in an alternating manner using a training dataset. When large training datasets are used, batch CDL algorithms become prohibitively memory-intensive. An online-learning technique is used to reduce the memory requirements of CDL by optimizing the dictionary incrementally after finding the sparse representations of each training sample. Nevertheless, learning large dictionaries using the existing online CDL (OCDL) algorithms remains highly computationally expensive. In this paper, we present a novel approximate OCDL method that incorporates sparse decomposition of the training samples. The resulting optimization problems are addressed using the alternating direction method of multipliers. Extensive experimental evaluations using several image datasets and based on an image fusion task show that the proposed method substantially reduces computational costs while preserving the effectiveness of the state-of-the-art OCDL algorithms.
引用
收藏
页码:1165 / 1175
页数:11
相关论文
共 33 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [3] Fast Convolutional Sparse Coding
    Bristow, Hilton
    Eriksson, Anders
    Lucey, Simon
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 391 - 398
  • [4] Chalasani R, 2013, IEEE IJCNN
  • [5] Dictionary Fields: Learning a Neural Basis Decomposition
    Chen, Anpei
    Xu, Zexiang
    Wei, Xinyue
    Tang, Siyu
    Su, Hao
    Geiger, Andreas
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [6] Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3973 - 3985
  • [7] Consensus Convolutional Sparse Coding
    Choudhury, Biswarup
    Swanson, Robin
    Heide, Felix
    Wetzstein, Gordon
    Heidrich, Wolfgang
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4290 - 4298
  • [8] Engan K, 1999, INT CONF ACOUST SPEE, P2443, DOI 10.1109/ICASSP.1999.760624
  • [9] Convolutional Dictionary Learning: A Comparative Review and New Algorithms
    Garcia-Cardona, Cristina
    Wohlberg, Brendt
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (03) : 366 - 381
  • [10] Heide F, 2015, PROC CVPR IEEE, P5135, DOI 10.1109/CVPR.2015.7299149