Finite Fractal Dimensional Pullback Attractors for a Class of 2D Magneto-Viscoelastic Flows

被引:1
作者
Ai, Chengfei [1 ]
Shen, Jun [2 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
关键词
Magneto-viscoelastic flows; Pullback attractors; Fractal dimension; The method of l-trajectories; 35Q35; 35B41; 37L30; 76A10; EVOLUTIONARY MODEL; WELL-POSEDNESS; EXISTENCE; SYSTEM; WEAK;
D O I
10.1007/s40840-023-01606-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the long-time behaviors of weak solutions for the 2D non-autonomous magneto-viscoelastic flows are considered. Unlike the results established by Liu and Liu (Politeh Univ Buchar Sci Bull Ser A Appl Math Phys 81(4):155-166, 2019), utilizing the method of & ell;-trajectories introduced by M & aacute;lek and Pra & zcaron;& aacute;k (J Differ Equ 181(2):243-279, 2002), we first justify the existence of finite-dimensional pullback attractors for the process {L(t,tau)}t >=tau in the & ell;-trajectories space X-& ell;. Then we obtain the corresponding finite-dimensional pullback attractors for the process {U(t,tau)}(t >=tau) in the original phase space H.
引用
收藏
页数:31
相关论文
共 44 条
[1]   Pullback exponential attractors for a class of non-Newtonian micropolar fluids [J].
Ai, Chengfei ;
Tan, Zhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
[2]  
Benesova Barbora, 2016, Proceedings in Applied Mathematics and Mechanics, V16, P663, DOI [10.1002/pamm.201610320, 10.1002/pamm.201610320]
[3]   EXISTENCE OF WEAK SOLUTIONS TO AN EVOLUTIONARY MODEL FOR MAGNETOELASTICITY [J].
Benesova, Barbora ;
Forster, Johannes ;
Liu, Chun ;
Schloemerkemper, Anja .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) :1200-1236
[4]  
Bienkowski A, 2002, PHYS STATUS SOLIDI A, V189, P787, DOI 10.1002/1521-396X(200202)189:3<787::AID-PSSA787>3.0.CO
[5]  
2-G
[6]  
Buchelnikov VD., 1992, Sov. Phys. Uspekhi, V35, P89
[7]   Weak solution and asymptotic behavior of magnetohydrodynamic flows of third grade fluids [J].
Chai, Xiaojuan ;
Niu, Weisheng .
ANNALES POLONICI MATHEMATICI, 2017, 120 (01) :1-31
[8]  
Chepyzhov V., 2002, ATTRACTORS EQUATIONS
[9]  
Chueshov I., 2002, INTRO THEORY INFINIT
[10]   Struwe-like solutions for an evolutionary model of magnetoviscoelastic fluids [J].
De Anna, Francesco ;
Kortum, Joshua ;
Schloemerkemper, Anja .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 :455-507