Classification of lentil seed vigor based on seedling image analysis techniques and interactive machine learning

被引:1
作者
Limao, Marcelo Augusto Rocha [1 ]
Dias, Denise Cunha Fernandes dos Santos [1 ]
Araujo, Joyce de Oliveira [1 ]
Soares, Julia Martins [1 ]
Nascimento, Warley Marcos [2 ]
da Silva, Laercio Junio [1 ]
机构
[1] Univ Fed Vicosa UFV, Dept Agron, Campus Univ,Ave PH Rolfs, BR-36570900 Vicosa, MG, Brazil
[2] Embrapa Hortal, Caixa Postal 280, Brasilia, DF, Brazil
关键词
Index terms; germination; Lens culinaris Medik; machine learning; physiological potential; software; vigor; PERFORMANCE; SYSTEM;
D O I
10.1590/2317-1545v45277692
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The search for techniques that allow for the rapid and accurate assessment of seed vigor, such as the Seedling Analysis System (SAPL (R)) and ILASTIK (R), can be promising alternatives for seedling image analysis. The objective of this work was to classify the vigor of lentil seeds using seedling image analysis techniques and interactive machine learning. Seeds from seven lots were characterized for physiological potential through germination and vigor tests. For computerized seedling analysis, the seeds were subjected to seedling growth tests at 20 degrees C for three, four, five, and ten days, and then photographed using a digital camera. The images were processed using SAPL (R) software, yielding values for total length, root length, shoot length, and vigor, growth, and uniformity indices. ILASTIK (R) provided data on the percentage of vigorous seedlings, non-vigorous seedlings, and dead seeds. The total length of seedlings, root length, shoot length, and vigor indices determined at 4 days of germination by SAPL (R) allowed for the classification of lots in terms of vigor. Data obtained by ILASTIK (R) at 4 days of germination, used in machine learning studies, enable the development of models with high accuracy for seed vigor assessment.
引用
收藏
页数:14
相关论文
共 36 条
  • [1] Image analysis of the seeds and seedlings of Vigna radiata L.
    Abud, Haynna Fernandes
    de Souza Mesquita, Cicera Manuele
    Sousa Sarmento, Erivanessa Costa
    Melo, Raylson de Sa
    Peres de Lima, Kelly Andressa
    Firmino da Silva, Ana Kelly
    [J]. REVISTA CIENCIA AGRONOMICA, 2022, 53
  • [2] X-ray CT image analysis for morphology of muskmelon seed in relation to germination
    Ahmed, Mohammed Raju
    Yasmin, Jannat
    Collins, Wakholi
    Cho, Byoung-Kwan
    [J]. BIOSYSTEMS ENGINEERING, 2018, 175 : 183 - 193
  • [3] Determination of the physiological quality of corn seeds by infrared equipment
    Andriazzi, Cinthia Vieira Golfi
    Rocha, Debora Kelli
    Custodio, Ceci Castilho
    [J]. JOURNAL OF SEED SCIENCE, 2023, 45
  • [4] [Anonymous], 2012, PORTARIA N 111
  • [5] ANTUNES-NETO A., 2020, Embrapa Milho e Sorgo, P21
  • [6] Chickpea seed vigor evaluated by computerized seedling analysis
    Araujo, Joyce de Oliveira
    Fernandes dos Santos Dias, Denise Cunha
    de Medeiros, Andre Dantas
    da Silva, Laercio Junio
    Nascimento, Warley Marcos
    [J]. SEMINA-CIENCIAS AGRARIAS, 2021, 42 (01): : 71 - 85
  • [7] Barbosa Rafael Marani, 2016, Cientifica (Jaboticabal), V44, P412, DOI 10.15361/1984-5529.2016v44n3p412-420
  • [8] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [9] Brasil Ministerio da Agricultura Pecuaria e Abastecimento. Secretaria de Defesa Agropecuaria, 2009, Regras para analise de sementes
  • [10] Seedling length in wheat determined by image processing using mathematical tools
    Brunes, Andre Pich
    Araujo, Adamo de Souza
    Dias, Leticia Winke
    Villela, Francisco Amaral
    Aumonde, Tiago Zanatta
    [J]. REVISTA CIENCIA AGRONOMICA, 2016, 47 (02): : 374 - 379