Flexible a-IGZO TFT-Based Circuit for Active Addressing in Neural Stimulation Electrode Arrays

被引:1
作者
Rodriguez-Lopez, Ovidio [1 ]
Rocha-Flores, Pedro E. [2 ]
Maeng, Jimin [3 ]
Cogan, Stuart F. [2 ]
Pancrazio, Joseph J. [2 ]
Tamil, Lakshman [1 ]
Voit, Walter E. [4 ,5 ]
Gutierrez-Heredia, Gerardo [6 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75080 USA
[3] Qualia Oto Inc, 17217 Waterview Pkwy, Dallas, TX 75252 USA
[4] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[5] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[6] Univ Sonora, Dept Fis, Hermosillo 83000, Sonora, Mexico
关键词
active addressing; electrical stimulations; indium-gallium-zinc-oxide thin-film transistors; neural interfaces; POLYMER; TRANSISTORS; STABILITY;
D O I
10.1002/admt.202301046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neural interfaces have undergone significant advancements in recent decades, aiming for flexible, compact, and high-density electrode arrays with a large number of channels. However, the scalability of these devices is often hindered by the number of wires needed to separately connect each electrode to external electronics. To address this limitation, thin-film transistor (TFT)-based electronic circuits offer a promising solution by enabling active addressing of stimulation electrodes and potentially increasing the channel count with fewer interconnections. This paper presents the integration of a circuit comprising two amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs and a titanium nitride (TiN) electrode on a flexible polymer platform. This circuit precisely controls the electrode's On/Off states and the delivery of current for nerve stimulation. Characterization studies involving frequency and electrochemical analysis demonstrate the TFT-based circuit's capability to operate at high frequencies, deliver biphasic stimulation pulses to the electrode, and store sufficient charge for effective neural stimulation. Moreover, the a-IGZO TFTs exhibit remarkable stability during repeated gate voltage sweeps with minimal changes in electrical performance. This circuit has the potential to be extended to active-matrix devices that enable electrode arrays with a high number of channels and enhanced spatial resolution, which is crucial for selective neural stimulation. Herein, a flexible and softening circuit based on amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFT) designed for active addressing in high-channel-count neural stimulation electrode arrays is presented, exhibiting a high On/Off switching frequency response, electrical stability, and the ability to deliver biphasic stimulation pulses through the electrodes. These characteristics highlight the potential of the circuit in enabling high spatial resolution electrode arrays for neural stimulation.image
引用
收藏
页数:9
相关论文
共 32 条
[1]  
Andersen T., 2022, PRINCIPLES TECHNOLOG
[2]   An intracortical neuroprosthesis immediately alleviates walking deficits and improves recovery of leg control after spinal cord injury [J].
Bonizzato, Marco ;
Martinez, Marina .
SCIENCE TRANSLATIONAL MEDICINE, 2021, 13 (586)
[3]   A brain-spine interface alleviating gait deficits after spinal cord injury in primates [J].
Capogrosso, Marco ;
Milekovic, Tomislav ;
Borton, David ;
Wagner, Fabien ;
Moraud, Eduardo Martin ;
Mignardot, Jean-Baptiste ;
Buse, Nicolas ;
Gandar, Jerome ;
Barraud, Quentin ;
Xing, David ;
Rey, Elodie ;
Duis, Simone ;
Yang Jianzhong ;
Ko, Wai Kin D. ;
Li, Qin ;
Detemple, Peter ;
Denison, Tim ;
Micera, Silvestro ;
Bezard, Erwan ;
Bloch, Jocelyne ;
Courtine, Gregoire .
NATURE, 2016, 539 (7628) :284-+
[4]   a-InGaZnO thin-film transistors for AMOLEDs: Electrical stability and pixel-circuit simulation [J].
Chen, Charlene ;
Abe, Katsumi ;
Kumomi, Hideya ;
Kanicki, Jerzy .
JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2009, 17 (06) :525-534
[5]   Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes [J].
Cogan, SF ;
Troyk, PR ;
Ehrlich, J ;
Plante, TD ;
Detlefsen, DE .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (02) :327-332
[6]   Neural stimulation and recording electrodes [J].
Cogan, Stuart F. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2008, 10 :275-309
[7]   Characterization of a Thiol-Ene/Acrylate-Based Polymer for Neuroprosthetic Implants [J].
Do, Dang-Huy ;
Ecker, Melanie ;
Voit, Walter E. .
ACS OMEGA, 2017, 2 (08) :4604-4611
[8]   From softening polymers to multimaterial based bioelectronic devices [J].
Ecker M. ;
Joshi-Imre A. ;
Modi R. ;
Frewin C.L. ;
Garcia-Sandoval A. ;
Maeng J. ;
Gutierrez-Heredia G. ;
Pancrazio J.J. ;
Voit W.E. .
Multifunctional Materials, 2019, 2 (01)
[9]   Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology [J].
Fang, Hui ;
Yu, Ki Jun ;
Gloschat, Christopher ;
Yang, Zijian ;
Song, Enming ;
Chiang, Chia-Han ;
Zhao, Jianing ;
Won, Sang Min ;
Xu, Siyi ;
Trumpis, Michael ;
Zhong, Yiding ;
Han, Seung Won ;
Xue, Yeguang ;
Xu, Dong ;
Choi, Seo Woo ;
Cauwenberghs, Gert ;
Kay, Matthew ;
Huang, Yonggang ;
Viventi, Jonathan ;
Efimov, Igor R. ;
Rogers, John A. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (03)
[10]   Chronic softening spinal cord stimulation arrays [J].
Garcia-Sandoval, Aldo ;
Pal, Ajay ;
Mishra, Asht M. ;
Sherman, Sydney ;
Parikh, Ankit R. ;
Joshi-Imre, Alexandra ;
Arreaga-Salas, David ;
Gutierrez-Heredia, Gerardo ;
Duran-Martinez, Adriana C. ;
Nathan, Jordan ;
Hosseini, Seyed Mahmoud ;
Carmel, Jason B. ;
Voit, Walter .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (04)