Paramodular groups and theta series

被引:1
作者
Boecherer, Siegfried [1 ]
Schulze-Pillot, Rainer [2 ]
机构
[1] Kunzenhof 4B, D-79117 Freiburg, Germany
[2] Univ Saarland, Fachrichtung Math, Postfach 151150, D-66041 Saarbrucken, Germany
关键词
Siegel modular forms; paramodular group; theta series; basis problem; SIEGEL MODULAR-FORMS;
D O I
10.1142/S1793042123501257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a paramodular group of any degree and square free level we study the Hecke algebra and the boundary components. We define paramodular theta series and show that for square free level and large enough weight they generate the space of cusp forms (basis problem), using the doubling or pullback of Eisenstein series method. For this we give a new geometric proof of Garrett's double coset decomposition which works in our more general situation.
引用
收藏
页码:2555 / 2590
页数:36
相关论文
共 44 条
  • [1] Lattice chain models for affine buildings of classical type
    Abramenko, P
    Nebe, G
    [J]. MATHEMATISCHE ANNALEN, 2002, 322 (03) : 537 - 562
  • [2] Andrianov A.-N., 1987, GRUNDLEHREN MATH WIS, V286
  • [3] Berger T, 2020, AM J MATH, V142, P1821
  • [4] SIEGEL MODULAR-FORMS AND THETA SERIES ATTACHED TO QUATERNION ALGEBRAS
    BOCHERER, S
    SCHULZEPILLOT, R
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1991, 121 : 35 - 96
  • [5] RATIONALITY THEOREM FOR FORMAL HECKE-SERIES WITH REGARD TO SIEGEL MODULAR-FORMS
    BOCHERER, S
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1986, 56 : 35 - 47
  • [6] Bocherer S., 2008, MODULAR FORMS ON SCH, P13
  • [7] Bocherer S., 1989, P S PURE MATH, V49, P3
  • [8] Borel A., 1977, P S PURE MATH, VXXXIII, P189
  • [9] Brumer A, 2014, T AM MATH SOC, V366, P2463
  • [10] Cartan H., 1957, SEMINAIRE H CARTAN, V10, P1