A hybrid deterministic-deterministic approach for high-dimensional Bayesian variable selection with a default prior

被引:1
|
作者
Lee, Jieun [1 ]
Goh, Gyuhyeong [1 ]
机构
[1] Kansas State Univ, Dept Stat, 1116 Mid Campus Dr N, Manhattan, KS 66506 USA
关键词
Forward selection; Greedy algorithm; High-dimensional Bayesian linear regression; Highest probability model (HPM); REGRESSION; GIBBS;
D O I
10.1007/s00180-023-01368-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Identifying relevant variables among numerous potential predictors has been of primary interest in modern regression analysis. While stochastic search algorithms have surged as a dominant tool for Bayesian variable selection, when the number of potential predictors is large, their practicality is constantly challenged due to high computational cost as well as slow convergence. In this paper, we propose a new Bayesian variable selection scheme by using hybrid deterministic-deterministic variable selection (HD-DVS) algorithm that asymptotically ensures a rapid convergence to the global mode of the posterior model distribution. A key feature of HD-DVS is that it allows us to circumvent the iterative computation of inverse matrices, which is a common computational bottleneck in Bayesian variable selection. A simulation study is conducted to demonstrate that our proposed method outperforms existing Bayesian and frequentist methods. An analysis of the Bardet-Biedl syndrome gene expression data is presented to illustrate the applicability of HD-DVS to real data.
引用
收藏
页码:1659 / 1681
页数:23
相关论文
共 50 条
  • [1] A hybrid deterministic–deterministic approach for high-dimensional Bayesian variable selection with a default prior
    Jieun Lee
    Gyuhyeong Goh
    Computational Statistics, 2024, 39 : 1659 - 1681
  • [2] ON THE COMPUTATIONAL COMPLEXITY OF HIGH-DIMENSIONAL BAYESIAN VARIABLE SELECTION
    Yang, Yun
    Wainwright, Martin J.
    Jordan, Michael I.
    ANNALS OF STATISTICS, 2016, 44 (06) : 2497 - 2532
  • [3] Sparse Bayesian variable selection for classifying high-dimensional data
    Yang, Aijun
    Lian, Heng
    Jiang, Xuejun
    Liu, Pengfei
    STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 385 - 395
  • [4] HIGH-DIMENSIONAL VARIABLE SELECTION
    Wasserman, Larry
    Roeder, Kathryn
    ANNALS OF STATISTICS, 2009, 37 (5A) : 2178 - 2201
  • [5] ESTIMATION IN HIGH-DIMENSIONAL LINEAR MODELS WITH DETERMINISTIC DESIGN MATRICES
    Shao, Jun
    Deng, Xinwei
    ANNALS OF STATISTICS, 2012, 40 (02) : 812 - 831
  • [6] Joint High-Dimensional Bayesian Variable and Covariance Selection with an Application to eQTL Analysis
    Bhadra, Anindya
    Mallick, Bani K.
    BIOMETRICS, 2013, 69 (02) : 447 - 457
  • [7] Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics
    Li, Fan
    Zhang, Nancy R.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1202 - 1214
  • [8] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Yang, Aijun
    Li, Yunxian
    Tang, Niansheng
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 399 - 418
  • [9] Posterior model consistency in high-dimensional Bayesian variable selection with arbitrary priors
    Hua, Min
    Goh, Gyuhyeong
    STATISTICS & PROBABILITY LETTERS, 2025, 223
  • [10] Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis
    Yang, Aijun
    Jiang, Xuejun
    Shu, Lianjie
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2017, 32 (01) : 127 - 143