A hybrid deterministic-deterministic approach for high-dimensional Bayesian variable selection with a default prior

被引:2
作者
Lee, Jieun [1 ]
Goh, Gyuhyeong [1 ]
机构
[1] Kansas State Univ, Dept Stat, 1116 Mid Campus Dr N, Manhattan, KS 66506 USA
关键词
Forward selection; Greedy algorithm; High-dimensional Bayesian linear regression; Highest probability model (HPM); REGRESSION; GIBBS;
D O I
10.1007/s00180-023-01368-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Identifying relevant variables among numerous potential predictors has been of primary interest in modern regression analysis. While stochastic search algorithms have surged as a dominant tool for Bayesian variable selection, when the number of potential predictors is large, their practicality is constantly challenged due to high computational cost as well as slow convergence. In this paper, we propose a new Bayesian variable selection scheme by using hybrid deterministic-deterministic variable selection (HD-DVS) algorithm that asymptotically ensures a rapid convergence to the global mode of the posterior model distribution. A key feature of HD-DVS is that it allows us to circumvent the iterative computation of inverse matrices, which is a common computational bottleneck in Bayesian variable selection. A simulation study is conducted to demonstrate that our proposed method outperforms existing Bayesian and frequentist methods. An analysis of the Bardet-Biedl syndrome gene expression data is presented to illustrate the applicability of HD-DVS to real data.
引用
收藏
页码:1659 / 1681
页数:23
相关论文
共 34 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]   Optimal predictive model selection [J].
Barbieri, MM ;
Berger, JO .
ANNALS OF STATISTICS, 2004, 32 (03) :870-897
[3]   Fast sampling with Gaussian scale mixture priors in high-dimensional regression [J].
Bhattacharya, Anirban ;
Chakraborty, Antik ;
Mallick, Bani K. .
BIOMETRIKA, 2016, 103 (04) :985-991
[4]  
Carvalho C. M., 2009, Artificial Intelligence and Statistics, P73
[5]   The horseshoe estimator for sparse signals [J].
Carvalho, Carlos M. ;
Polson, Nicholas G. ;
Scott, James G. .
BIOMETRIKA, 2010, 97 (02) :465-480
[6]   Objective Bayesian variable selection [J].
Casella, G ;
Moreno, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :157-167
[7]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[8]   Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins [J].
Cibis, Hannah ;
Biyanee, Abhiruchi ;
Doerner, Wolfgang ;
Mootz, Henning D. ;
Klempnauer, Karl-Heinz .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   Identification of TMEM230 mutations in familial Parkinson's disease [J].
Deng, Han-Xiang ;
Shi, Yong ;
Yang, Yi ;
Ahmeti, Kreshnik B. ;
Miller, Nimrod ;
Huang, Cao ;
Cheng, Lijun ;
Zhai, Hong ;
Deng, Sheng ;
Nuytemans, Karen ;
Corbett, Nicola J. ;
Kim, Myung Jong ;
Deng, Hao ;
Tang, Beisha ;
Yang, Ziquang ;
Xu, Yanming ;
Chan, Piu ;
Huang, Bo ;
Gao, Xiao-Ping ;
Song, Zhi ;
Liu, Zhenhua ;
Fecto, Faisal ;
Siddique, Nailah ;
Foroud, Tatiana ;
Jankovic, Joseph ;
Ghetti, Bernardino ;
Nicholson, Daniel A. ;
Krainc, Dimitri ;
Melen, Onur ;
Vance, Jeffery M. ;
Pericak-Vance, Margaret A. ;
Ma, Yong-Chao ;
Rajput, Ali H. ;
Siddique, Teepu .
NATURE GENETICS, 2016, 48 (07) :733-+
[10]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360