A new three-term spectral subgradient method for solving absolute value equation

被引:2
作者
Rahpeymaii, Farzad [1 ]
Amini, Keyvan [2 ]
Rostamy-Malkhalifeh, Mohsen [3 ]
机构
[1] Tech & Vocat Univ TVU, Dept Math, Tehran, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
[3] Islamic Azad Univ, Sci & Res branch, Dept Math, Tehran, Iran
关键词
Absolute value equation; conjugate subgradient method; wolfe conditions; global convergence; CONJUGATE-GRADIENT METHOD; CONVERGENCE;
D O I
10.1080/00207160.2022.2121606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new three-term spectral conjugate subgradient method is presented to solve an absolute value equation. The new method is constructed based on conjugate gradient method proposed by Dai & Yuan and Barzilai & Borwein technique. In each iteration, a descent direction is generated. The global convergence of the new method is established under some mild assumptions. The numerical results are reported, showing the efficiency of our method.
引用
收藏
页码:440 / 452
页数:13
相关论文
共 26 条
[1]  
Al-Bayati AY., 2010, CAN J SCI ENG MATH, V1, P108
[2]   Dai-Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processing [J].
Aminifard, Zohre ;
Babaie-Kafaki, Saman .
NUMERICAL ALGORITHMS, 2022, 89 (03) :1369-1387
[3]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[4]  
Beale E.M. L., 1972, Numerical Methods for Nonlinear Optimization, P39
[5]  
Clarke F.H., 1990, Optimization and nonsmooth analysis
[6]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[7]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[8]   An improved generalized Newton method for absolute value equations [J].
Feng, Jingmei ;
Liu, Sanyang .
SPRINGERPLUS, 2016, 5
[9]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[10]  
Hager W.W., 2006, Pacific journal of optimization, V2, P35