Optimal vaccination strategies using a distributed model applied to COVID-19

被引:8
作者
Angelov, Georgi [1 ]
Kovacevic, Raimund [2 ]
Stilianakis, Nikolaos, I [3 ,4 ]
Veliov, Vladimir M. [1 ]
机构
[1] Vienna Univ Technol, Inst Stat & Math Methods Econ, Vienna, Austria
[2] Univ Continuing Educ Krems, Dept Econ & Hlth, Krems Ad Donau, Austria
[3] European Commiss, Joint Res Ctr JRC, Ispra, Italy
[4] Univ Erlangen Nurnberg, Dept Biometry & Epidemiol, Erlangen, Germany
基金
奥地利科学基金会;
关键词
Epidemics; Epidemiological model; Optimal control; SARS-CoV-2; Vaccination;
D O I
10.1007/s10100-022-00819-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Optimal distribution of vaccines to achieve high population immunity levels is a desirable aim in infectious disease epidemiology. A distributed optimal control epidemiological model that accounts for vaccination was developed and applied to the case of the COVID-19 pandemic. The model proposed here is nonstandard and takes into account the heterogeneity of the infected sub-population with respect to the time since infection, which is essential in the case of COVID-19. Based on the epidemiological characteristics of COVID-19 we analyze several vaccination scenarios and an optimal vaccination policy. In particular we consider random vaccination over the whole population and the prioritization of age groups such as the elderly and compare the effects with the optimal solution. Numerical results of the model show that random vaccination is efficient in reducing the overall number of infected individuals. Prioritization of the elderly leads to lower mortality though. The optimal strategy in terms of total deaths is early prioritization of those groups having the highest contact rates.
引用
收藏
页码:499 / 521
页数:23
相关论文
共 16 条
[1]  
Acemoglu D, 2020, Optimal targeted lockdowns in a multi-group SIR prototype (No. w27102), DOI DOI 10.3386/W27102
[2]   Sex differences in social focus across the life cycle in humans [J].
Bhattacharya, Kunal ;
Ghosh, Asim ;
Monsivais, Daniel ;
Dunbar, Robin I. M. ;
Kaski, Kimmo .
ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (04)
[3]  
Bloom DE, 2000, 187 PGDA
[4]   Model-informed COVID-19 vaccine prioritization strategies by age and serostatus [J].
Bubar, Kate M. ;
Reinholt, Kyle ;
Kissler, Stephen M. ;
Lipsitch, Marc ;
Cobey, Sarah ;
Grad, Yonatan H. ;
Larremore, Daniel B. .
SCIENCE, 2021, 371 (6532) :916-+
[5]   The optimal lockdown intensity for COVID-19 [J].
Caulkins, Jonathan P. ;
Grass, Dieter ;
Feichtinger, Gustav ;
Hartl, Richard F. ;
Kort, Peter M. ;
Prskawetz, Alexia ;
Seidl, Andrea ;
Wrzaczek, Stefan .
JOURNAL OF MATHEMATICAL ECONOMICS, 2021, 93
[6]   Age-dependent effects in the transmission and control of COVID-19 epidemics [J].
Davies, Nicholas G. ;
Klepac, Petra ;
Liu, Yang ;
Prem, Kiesha ;
Jit, Mark ;
Eggo, Rosalind M. .
NATURE MEDICINE, 2020, 26 (08) :1205-+
[7]   Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study [J].
Jentsch, Peter C. ;
Anand, Madhur ;
Bauch, Chris T. .
LANCET INFECTIOUS DISEASES, 2021, 21 (08) :1097-1106
[8]   SARS-CoV-2 Transmission From People Without COVID-19 Symptoms [J].
Johansson, Michael A. ;
Quandelacy, Talia M. ;
Kada, Sarah ;
Prasad, Pragati Venkata ;
Steele, Molly ;
Brooks, John T. ;
Slayton, Rachel B. ;
Biggerstaff, Matthew ;
Butler, Jay C. .
JAMA NETWORK OPEN, 2021, 4 (01)
[9]   A DISTRIBUTED OPTIMAL CONTROL MODEL APPLIED TO COVID-19 PANDEMIC [J].
Kovacevic, Raimund M. ;
Stilianakis, Nikolaos, I ;
Veliov, Vladimir M. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (02) :S221-S245
[10]  
Matrajt Laura, 2020, medRxiv, DOI [10.1126/sciadv.abf1374, 10.1101/2020.08.14.20175257]