Significantly improved high-temperature capacitive performance in polymer dielectrics utilizing ultra-small carbon quantum dots with Coulomb-blockade effect

被引:16
作者
Cai, Hangchuan [1 ]
Wang, Rui [1 ,2 ]
Gou, Bin [1 ]
Fu, Jing [2 ]
Zhu, Yujie [2 ]
Yang, Hao [1 ]
Zhou, Jiangang [1 ]
Li, Manxi [2 ]
Zhong, An [1 ]
Zhang, Daoming [1 ]
Xu, Huasong [1 ]
Bi, Chunhui [1 ]
Xie, Congzhen [1 ]
机构
[1] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510641, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Coulomb-blockade effect; In -situ microwave carbonization; High-temperature dielectric capacitor; Energy storage density; AREA;
D O I
10.1016/j.cej.2023.146672
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Advanced electronic equipment requires polymer film capacitors to work under harsh temperature and electric field conditions. However, the inevitable deterioration of the insulation performance with electric field and temperature will limit the improvement of high-temperature capacitive performance. Herein, we report a novel sandwich-structured dielectric nanocomposite, utilizing microwave radiation in-situ to synthesize subminiature carbon quantum dots (CQDs) in the middle layer. Comprehensive simulation and experimental results confirm that CQDs, as an electronic barrier, prevent carriers from passing through the interlayer, thereby significantly reducing the leakage current in the polymer matrix at high temperatures, and obtaining excellent breakdown strength. Thanks to the slightly increased dielectric constant and significantly reduced energy loss, the nanocomposites with the optimal loading exhibit an excellent discharged energy density of 4.10 J cm-3 with efficiency above 90 % at 200 degrees C, which is far superior to most current dielectric nanocomposites. We believe that this simple and economic strategy provides a new idea for the development of green dielectric capacitors.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Improved Working Temperature and Capacitive Energy Density of Biaxially Oriented Polypropylene Films with Alumina Coating Layers [J].
Bao, Zhiwei ;
Du, Xinzhe ;
Ding, Song ;
Chen, Jiahao ;
Dai, Zhizhan ;
Liu, Chuanchuan ;
Wang, Yuchen ;
Yin, Yuewei ;
Li, Xiaoguang .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) :3119-3128
[2]   Inhibition conduction loss for distinct improvement of energy storage density over a broad temperature range in polyetherimide-based composite films [J].
Chen, Hanxi ;
Pan, Zhongbin ;
Cheng, Yu ;
Ding, Xiangping ;
Li, Zhicheng ;
Fan, Xu ;
Liu, Jinjun ;
Li, Peng ;
Yu, Jinhong ;
Zhai, Jiwei .
POLYMER, 2023, 265
[3]   Ladderphane copolymers for high-temperature capacitive energy storage [J].
Chen, Jie ;
Zhou, Yao ;
Huang, Xingyi ;
Yu, Chunyang ;
Han, Donglin ;
Wang, Ao ;
Zhu, Yingke ;
Shi, Kunming ;
Kang, Qi ;
Li, Pengli ;
Jiang, Pingkai ;
Qian, Xiaoshi ;
Bao, Hua ;
Li, Shengtao ;
Wu, Guangning ;
Zhu, Xinyuan ;
Wang, Qing .
NATURE, 2023, 615 (7950) :62-+
[4]   Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage [J].
Cheng, Sang ;
Zhou, Yao ;
Li, Yushu ;
Yuan, Chao ;
Yang, Mingcong ;
Fu, Jing ;
Hu, Jun ;
He, Jinliang ;
Li, Qi .
ENERGY STORAGE MATERIALS, 2021, 42 :445-453
[5]   Enhancing the Molecular Signature in Molecule-Nanoparticle Networks Via Inelastic Cotunneling [J].
Dayen, Jean-Francois ;
Devid, Edwin ;
Kamalakar, Mutta Venkata ;
Golubev, Dmitry ;
Guedon, Constant ;
Faramarzi, Vina ;
Doudin, Bernard ;
van der Molen, Sense Jan .
ADVANCED MATERIALS, 2013, 25 (03) :400-404
[6]   Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification [J].
Deshmukh, Ajinkya A. ;
Wu, Chao ;
Yassin, Omer ;
Mishra, Ankit ;
Chen, Lihua ;
Alamri, Abdullah ;
Li, Zongze ;
Zhou, Jierui ;
Mutlu, Zeynep ;
Sotzing, Michael ;
Rajak, Pankaj ;
Shukla, Stuti ;
Vellek, John ;
Baferani, Mohamadreza Arab ;
Cakmak, Mukerrem ;
Vashishta, Priya ;
Ramprasad, Rampi ;
Cao, Yang ;
Sotzing, Gregory .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) :1307-1314
[7]   A Facile In Situ Surface-Functionalization Approach to Scalable Laminated High-Temperature Polymer Dielectrics with Ultrahigh Capacitive Performance [J].
Dong, Jiufeng ;
Hu, Renchao ;
Xu, Xinwei ;
Chen, Jie ;
Niu, Yujuan ;
Wang, Feng ;
Hao, Jianyu ;
Wu, Kai ;
Wang, Qing ;
Wang, Hong .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (32)
[8]   Dielectric materials for high-temperature capacitorsInspec keywordsOther keywords [J].
Fan, Baoyan ;
Liu, Feihua ;
Yang, Guang ;
Li, He ;
Zhang, Guangzu ;
Jiang, Shenglin ;
Wang, Qing .
IET NANODIELECTRICS, 2018, 1 (01) :32-40
[9]   Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges [J].
Feng, Qi-Kun ;
Liu, Di-Fan ;
Zhang, Yong-Xin ;
Pei, Jia-Yao ;
Zhong, Shao-Long ;
Hu, Hui-Yi ;
Wang, Xin-Jie ;
Dang, Zhi-Min .
NANO ENERGY, 2022, 99
[10]   Improvement of high-temperature energy storage performance in polymer dielectrics by nanofillers with defect spinel structure [J].
Fu, Jing ;
Yang, Mingcong ;
Wang, Rui ;
Cheng, Sang ;
Huang, Xiaoyan ;
Wang, Shaojie ;
Li, Junluo ;
Li, Manxi ;
He, Jinliang ;
Li, Qi .
MATERIALS TODAY ENERGY, 2022, 29