Motor progression phenotypes in early-stage Parkinson's Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers

被引:4
作者
He, Peikun [1 ,2 ,3 ]
Gao, Yuyuan [2 ,3 ]
Shi, Lin [4 ,5 ]
Li, Yanyi [2 ]
Jiang, Shuolin [2 ]
Tie, Zihui [2 ]
Qiu, Yihui [2 ]
Ma, Guixian [2 ,3 ]
Zhang, Yuhu [2 ,3 ]
Nie, Kun [2 ,3 ,6 ]
Wang, Lijuan [1 ,2 ,3 ,6 ]
机构
[1] South China Univ Technol, Sch Med, Guangzhou 510006, Peoples R China
[2] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Guangdong Neurosci Inst,Dept Neurol, Guangzhou, Peoples R China
[3] Southern Med Univ, Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangzhou Key Lab Diag & Treatment Neurodegenerat, Guangzhou, Peoples R China
[4] Chinese Univ Hong Kong, Dept Imaging & Intervent Radiol, Shatin, Hong Kong, Peoples R China
[5] BrainNow Res Inst, Shenzhen, Guangdong, Peoples R China
[6] Southern Med Univ, Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Neurosci Inst,Dept Neurol, 106 Zhongshan Er Rd, Guangzhou 510080, Guangdong, Peoples R China
关键词
Prediction model; Motor-progression phenotype; Glymphatic biomarker; Parkinson 's disease; CSF BIOMARKERS;
D O I
10.1016/j.neulet.2023.137435
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Substantial heterogeneity of motor symptoms in Parkinson's disease (PD) poses a challenge to disease prediction. Objectives: The aim of this study was to construct a nomogram model that can distinguish different longitudinal trajectories of motor symptom changes in early-stage PD patients. Methods: Data on 90 patients with 5-years of follow-up were collected from the Parkinson's Progression Marker Initiative (PPMI) cohort. We used a latent class mixed modeling (LCMM) to identify distinct progression patterns of motor symptoms, and backward stepwise logistic regression with baseline information was conducted to identify the potential predictors for motor trajectory and to develop a nomogram. The performance of the nomogram model was then evaluated using the optimism-corrected C-index for internal validation, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for discrimination, the calibration curve for predictive accuracy, and decision curve analysis (DCA) for its clinical value. Results: We identified two trajectories for motor progression patterns. The first, Class 1 (Motor deteriorated group), was characterized by sustained, continuously worsening motor symptoms, and the second, Class 2 (Motor stable group), had stable motor symptoms throughout the follow-up period. The best combination of 7 baseline variables was identified and assembled into the nomogram: Scopa-AUT [odds ratio (OR), 1.11; p = 0.091], Letter number sequencing (LNS) (OR, 0.76; p = 0.068), the asymmetry index of putamen (OR, 0.95; p = 0.034), mean caudate uptake (OR, 0.14; p = 0.086), CSF pTau/alpha-synuclein (OR, 0.00; p = 0.011), CSF tTau/A beta (OR, 25434806; p = 0.025), and the index for diffusion tensor image analysis along the perivascular space (ALPSindex) (OR, 0.02; p = 0.030). The nomogram achieved good discrimination, with an original AUC of 0.901 (95% CI, 0.813-0.989), and the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.834. The calibration curve and DCA also suggested both the high accuracy and clinical usefulness of the nomogram, respectively. Conclusions: This study proposes an effective nomogram to predict different motor progression patterns in earlystage PD. Furthermore, the imaging biomarker indicating glymphatic function could be an independent predictive factor for PD motor progression.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] Neuroimaging findings related to glymphatic system alterations in older adults with metabolic syndrome
    Andica, Christina
    Kamagata, Koji
    Takabayashi, Kaito
    Kikuta, Junko
    Kaga, Hideyoshi
    Someya, Yuki
    Tamura, Yoshifumi
    Kawamori, Ryuzo
    Watada, Hirotaka
    Taoka, Toshiaki
    Naganawa, Shinji
    Aoki, Shigeki
    [J]. NEUROBIOLOGY OF DISEASE, 2023, 177
  • [2] Amyloid-Beta (Aβ) Plaques Promote Seeding and Spreading of Alpha-Synuclein and Tau in a Mouse Model of Lewy Body Disorders with Aβ Pathology
    Bassil, Fares
    Brown, Hannah J.
    Pattabhiraman, Shankar
    Iwasyk, Joe E.
    Maghames, Chantal M.
    Meymand, Emily S.
    Cox, Timothy O.
    Riddle, Dawn M.
    Zhang, Bin
    Trojanowski, John Q.
    Lee, Virginia M. -Y.
    [J]. NEURON, 2020, 105 (02) : 260 - +
  • [3] Prodromal Parkinson disease subtypes - key to understanding heterogeneity
    Berg, Daniela
    Borghammer, Per
    Fereshtehnejad, Seyed-Mohammad
    Heinzel, Sebastian
    Horsager, Jacob
    Schaeffer, Eva
    Postuma, Ronald B.
    [J]. NATURE REVIEWS NEUROLOGY, 2021, 17 (06) : 349 - 361
  • [4] The glymphatic system: Current understanding and modeling
    Bohr, Tomas
    Hjorth, Poul G.
    Holst, Sebastian C.
    Hrabetova, Sabina
    Kiviniemi, Vesa
    Lilius, Tuomas
    Lundgaard, Iben
    Mardal, Kent-Andre
    Martens, Erik A.
    Mori, Yuki
    Nagerl, U. Valentin
    Nicholson, Charles
    Tannenbaum, Allen
    Thomas, John H.
    Tithof, Jeffrey
    Benveniste, Helene
    Iliff, Jeffrey J.
    Kelley, Douglas H.
    Nedergaard, Maiken
    [J]. ISCIENCE, 2022, 25 (09)
  • [5] Diffusion along perivascular spaces provides evidence interlinking compromised glymphatic function with aging in Parkinson's disease
    Cai, Xin
    Chen, Zhenzhen
    He, Chentao
    Zhang, Piao
    Nie, Kun
    Qiu, Yihui
    Wang, Limin
    Wang, Lijuan
    Jing, Ping
    Zhang, Yuhu
    [J]. CNS NEUROSCIENCE & THERAPEUTICS, 2023, 29 (01) : 111 - 121
  • [6] Perivascular space in Parkinson's disease: Association with CSF amyloid/ tau and cognitive decline
    Chen, Huimin
    Wan, Huijuan
    Zhang, Meimei
    Wardlaw, Joanna M.
    Feng, Tao
    Wang, Yilong
    [J]. PARKINSONISM & RELATED DISORDERS, 2022, 95 : 70 - 76
  • [7] Trajectory Analysis of Orthostatic Hypotension in Parkinson's Disease: Results From Parkinson's Progression Markers Initiative Cohort
    Chen, Kui
    Du, Kangshuai
    Zhao, Yichen
    Gu, Yongzhe
    Zhao, Yanxin
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [8] Identification and prediction of Parkinson's disease subtypes and progression using machine learning in two cohorts
    Dadu, Anant
    Satone, Vipul
    Kaur, Rachneet
    Hashemi, Sayed Hadi
    Leonard, Hampton
    Iwaki, Hirotaka
    Makarious, Mary B.
    Billingsley, Kimberley J.
    Bandres-Ciga, Sara
    Sargent, Lana J.
    Noyce, Alastair J.
    Daneshmand, Ali
    Blauwendraat, Cornelis
    Marek, Ken
    Scholz, Sonja W.
    Singleton, Andrew B.
    Nalls, Mike A.
    Campbell, Roy H.
    Faghri, Faraz
    [J]. NPJ PARKINSONS DISEASE, 2022, 8 (01)
  • [9] Tau Interacts with the C-Terminal Region of α-Synuclein, Promoting Formation of Toxic Aggregates with Distinct Molecular Conformations
    Dasari, Anvesh K. R.
    Kayed, Rakez
    Wi, Sungsool
    Lim, Kwang Hun
    [J]. BIOCHEMISTRY, 2019, 58 (25) : 2814 - 2821
  • [10] Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease
    Ding, Xue-Bing
    Wang, Xin-Xin
    Xia, Dan-Hao
    Liu, Han
    Tian, Hai-Yan
    Fu, Yu
    Chen, Yong-Kang
    Qin, Chi
    Wang, Jiu-Qi
    Xiang, Zhi
    Zhang, Zhong-Xian
    Cao, Qin-Chen
    Wang, Wei
    Li, Jia-Yi
    Wu, Erxi
    Tang, Bei-Sha
    Ma, Ming-Ming
    Teng, Jun-Fang
    Wang, Xue-Jing
    [J]. NATURE MEDICINE, 2021, 27 (03) : 411 - +