Hafnia HfO2 is a proper ferroelectric

被引:19
作者
Raeliarijaona, Aldo [1 ]
Cohen, R. E. [1 ]
机构
[1] Carnegie Inst Sci, Earth & Planets Lab, Extreme Mat Initiat, 5241 Broad Branch Rd NW, Washington, DC 20015 USA
关键词
BILBAO CRYSTALLOGRAPHIC SERVER; NEUTRON-DIFFRACTION; STRUCTURAL-ANALYSIS; PHASE-TRANSITIONS; CRYSTAL-STRUCTURE; HIGH-PRESSURE; X-RAY; ENERGY; FILMS; PHONONS;
D O I
10.1103/PhysRevB.108.094109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We clarify the nature of hafnia as a proper ferroelectric and show that there is a shallow double well involving a single soft polar mode as in well-known classic ferroelectrics. Using symmetry analysis, density functional theory structural optimizations with and without epitaxial strain, and density functional perturbation theory, we examine several important possible hafnia structures derived ultimately from the cubic fluorite structure, including baddeleyite (P21/c), tetragonal antiferroelectric P42nmc, Pbca (nonpolar and brookite), ferroelectric rhombohedral (R3m and R3), Pmn21, and Pca21 structures. The latter is considered to be the most likely ferroelectric phase seen experimentally and has an antiferroelectric parent with space group Pbcn, with a single unstable polar mode and a shallow double well with a well depth of 24 meV/atom. Strain is not required for switching or other ferroelectric properties, nor is coupling of the soft mode with any other modes within the ferroelectric Pca21, Pmn21, R3m, or R3 phases.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Temperature-Dependent Subcycling Behavior of Si-Doped HfO2 Ferroelectric Thin Films [J].
Li, Shuaidong ;
Zhou, Dayu ;
Shi, Zhixin ;
Hoffmann, Michael ;
Mikolajick, Thomas ;
Schroeder, Uwe .
ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (05) :2415-2422
[42]   Anomalous structural distortion - a possible origin for the waking-up of the spontaneous polarization in ferroelectric HfO2 [J].
Nittayakasetwat, Siri ;
Kita, Koji .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2021, 60 (07)
[43]   Evidence of ferroelectric HfO2 phase transformation induced by electric field cycling observed at a macroscopic scale [J].
Nittayakasetwat, Siri ;
Kita, Koji .
SOLID-STATE ELECTRONICS, 2021, 184
[44]   Structural and ferroelectric properties of Pr doped HfO2 thin films fabricated by chemical solution method [J].
Liu, Heng ;
Zheng, Shuaizhi ;
Chen, Qiang ;
Zeng, Binjian ;
Jiang, Jie ;
Peng, Qiangxiang ;
Liao, Min ;
Zhou, Yichun .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (06) :5771-5779
[45]   In situ study of the atomic layer deposition of HfO2 on Si [J].
Kolanek, Krzysztof ;
Tallarida, Massimo ;
Michling, Marcel ;
Schmeisser, Dieter .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01)
[46]   Dopant compensation in HfO2 and other high K oxides [J].
Li, H. ;
Guo, Y. ;
Robertson, J. .
APPLIED PHYSICS LETTERS, 2014, 104 (19)
[47]   Crystal structure of monoclinic hafnia (HfO2) revisited with synchrotron X-ray, neutron diffraction and first-principles calculations [J].
Pathak, Santanu ;
Das, Parnika ;
Das, Tilak ;
Mandal, Guruprasad ;
Joseph, Boby ;
Sahu, Manjulata ;
Kaushik, S. D. ;
Siruguri, Vasudeva .
ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY, 2020, 76 :1034-+
[48]   Enhancing ferroelectric stability: wide-range of adaptive control in epitaxial HfO2/ZrO2 superlattices [J].
Li, Jingxuan ;
Deng, Shiqing ;
Ma, Liyang ;
Si, Yangyang ;
Zhou, Chao ;
Wang, Kefan ;
Huang, Sizhe ;
Yang, Jiyuan ;
Tang, Yunlong ;
Ku, Yu-Chieh ;
Kuo, Chang-Yang ;
Li, Yijie ;
Das, Sujit ;
Liu, Shi ;
Chen, Zuhuang .
NATURE COMMUNICATIONS, 2025, 16 (01)
[49]   Thickness-dependent ferroelectric properties of HfO2/ZrO2 nanolaminates using atomic layer deposition [J].
Chen, Yonghong ;
Wang, Lu ;
Liu, Leyang ;
Tang, Lin ;
Yuan, Xi ;
Chen, Haiyan ;
Zhou, Kechao ;
Zhang, Dou .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (10) :6064-6072
[50]   Designing Wake-Up Free Ferroelectric Capacitors Based on the HfO2/ZrO2 Superlattice Structure [J].
Bai, Na ;
Xue, Kan-Hao ;
Huang, Jinhai ;
Yuan, Jun-Hui ;
Wang, Wenlin ;
Mao, Ge-Qi ;
Zou, Lanqing ;
Yang, Shengxin ;
Lu, Hong ;
Sun, Huajun ;
Miao, Xiangshui .
ADVANCED ELECTRONIC MATERIALS, 2023, 9 (01)