Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice

被引:0
作者
Chen, Sheng-Min-Jie [1 ]
Du, Dong-Lei [2 ]
Yang, Wen-Guo [1 ]
Gao, Sui-Xiang [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Univ New Brunswick, Fac Management, Fredericton, NB, Canada
基金
中国国家自然科学基金; 芬兰科学院; 加拿大自然科学与工程研究理事会;
关键词
DR-submodular maximization; Integer lattice; Threshold decrease algorithm; ALGORITHMS; APPROXIMATIONS;
D O I
10.1007/s40305-023-00469-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we focus on maximizing the ratio of two monotone DR-submodular functions on the integer lattice. It is neither submodular nor supermodular. We prove that the Threshold Decrease Algorithm is a 1 - e(-(1-kg)) - e approximation ratio algorithm. Additionally, we construct the relationship between maximizing the ratio of two monotone DR-submodular functions and maximizing the difference of two monotone DR-submodular functions on the integer lattice. Based on this relationship, we combine the dichotomy technique and Threshold Decrease Algorithm to solve maximizing the difference of two monotone DR-submodular functions on the integer lattice and prove its approximation ratio is f (x)-g(x) ? 1-e(-(1-kg)) f (x*)-g(x*)- e. To the best of our knowledge, before us, there was no work to focus on maximizing the ratio of two monotone DR-submodular functions on integer lattice by using the Threshold Decrease Algorithm.
引用
收藏
页码:142 / 160
页数:19
相关论文
共 30 条
  • [1] Alon N., 2012, P INT C WORLD WID WE, P381
  • [2] [Anonymous], 2011, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume, DOI DOI 10.1002/ART.33407
  • [3] BADANIDIYURU A., 2014, P 25 ANN ACM SIAM S, P1497, DOI [10.1137/1.9781611973402.110, DOI 10.1137/1.9781611973402.110]
  • [4] Bai WR, 2016, PR MACH LEARN RES, V48
  • [5] Bian AA, 2017, PR MACH LEARN RES, V70
  • [6] Output-Input Ratio Maximization for Online Social Networks: Algorithms and Analyses
    Chen, Shengminjie
    Yang, Wenguo
    Zhang, Yapu
    Gao, Suixiang
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 958 - 969
  • [7] Novel algorithms for maximum DS decomposition
    Chen, Shengminjie
    Yang, Wenguo
    Gao, Suixiang
    Jin, Rong
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 857 : 87 - 96
  • [8] Scalable Lattice Influence Maximization
    Chen, Wei
    Wu, Ruihan
    Yu, Zheng
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2020, 7 (04) : 956 - 970
  • [9] FISHER ML, 1978, MATH PROGRAM STUD, V8, P73, DOI 10.1007/BFb0121195
  • [10] Golovin D, 2011, J ARTIF INTELL RES, V42, P427